• 제목/요약/키워드: Real time force control

검색결과 247건 처리시간 0.028초

실시간 하이브리드 실험법을 이용한 동조액체기둥감쇠기가 설치된 구조물의 지진응답 제어성능 평가 (Performance Evaluation of Controlling Seismic Responses of a Building Structure with a Tuned Liquid Column Damper using the Real-Time Hybrid Testing Method)

  • 정희산;이성경;박은천;민경원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.669-673
    • /
    • 2007
  • In this study, real-time hybrid test using a shaking table for the control performance evaluation of a U-shaped TLCD controlling the response of earthquake-excited building structure is experimentally implemented. In the test, the building structure is used as a numerical part, on which a U-shaped TLCD adopted as an experimental part was installed to reduceits response. At first, the force that is acting between a TLCD and building structure is measured from the load cell attached on shaking table and is fed-back to the computer to control the motion of shaking table. Then, the shaking table is so driven that the error between the interface acceleration computed from the numerical building structure with the excitations of earthquake and the fed-back interface force and that measured from the shaking table. The control efficiency of the TLCD used in this paper is experimentally confirmed by implementing this process of shaking table experiment on real-time.

  • PDF

한국형 틸팅열차의 기계적 제동 동특성에 대한 실시간 시뮬레이션 (Real-time Simulation for Dynamic Characteristics of Mechanical Braking of the Korean Tilting Train)

  • 김호연;강철구
    • 대한기계학회논문집A
    • /
    • 제33권11호
    • /
    • pp.1294-1299
    • /
    • 2009
  • The Korean tilting train called Hanvit 200 was launched recently in Korea to improve train speed up to 200 km/h at conventional lines. In this paper, we propose a HILS system for simulations of mechanical braking of the Hanvit 200 train using actual ASCU, actual dump valves, Simulink, dSPACE board, and ControlDesk software. In the proposed HILS system, dynamics of wheelsets, bogies and car body, brake force generation, creep force generations are realized via mathematical models, and anti-skid logic is realized using actual components. The validity of the proposed HILS system is demonstrated via comparing results of real-time and off-line simulations.

차량 시스템 개발 및 운전자 인자 연구를 위한 실시간 차량 시뮬레이터의 개발 (Development of a Real-Time Driving Simulator for Vehicle System Development and Human Factor Study)

  • 이승준
    • 한국자동차공학회논문집
    • /
    • 제7권7호
    • /
    • pp.250-257
    • /
    • 1999
  • Driving simulators are used effectively for human factor study, vehicle system development and other purposes by enabling to reproduce actural driving conditions in a safe and tightly controlled enviornment. Interactive simulation requries appropriate sensory and stimulus cuing to the driver . Sensory and stimulus feedback can include visual , auditory, motion, and proprioceptive cues. A fixed-base driving simulator has been developed in this study for vehicle system developmnet and human factor study . The simulator consists of improved and synergistic subsystems (a real-time vehicle simulation system, a visual/audio system and a control force loading system) based on the motion -base simulator, KMU DS-Ⅰ developed for design and evaluation of a full-scale driving simulator and for driver-vehicle interaction.

  • PDF

서보건을 이용한 저항 점용접 공정에서의 가압력 패턴에 의한 용접품질 평가 (The Evaluation on Welding Qualities by Gun Press Force Patterns in the RSW (Resistance Spot Welding) Process using Servo Gun)

  • 박영제;조형석;박지환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.252-252
    • /
    • 2000
  • The Resistance Spot Welding (RSW) has been considered as an inherently safe and reliable method far joining metals, and has been widely employed, especially in automobile body assembly shops, as a manufacturing process. In recent years, the requirement for more sophisticated quality control procedures has considerably grown in the mass production industries. The object of the application of servo control to spot welding gun is the improvement of quality control in the spot welding, one of conventional industrial areas. The important factors affecting welding qualities (shear strength, nuggest size, indentation depth) are welding current, welding time, and gun press force. Welding current and welding time are controlled by welding timer. But, the conventional welding guns using compressed air are out of control in changing gun press forces in welding process. In this paper, a servo gun welding system having a AC servo motor and a PC control system is presented. The main object of this paper is to estimate the influence of gun press force changes in the welding process (press time -> welding time -> hold time) to welding qualities, and to evaluate welding qualities in real time, by recognizing the patterns of gun press forces changed in the welding process and comparing with the standard patterns.

  • PDF

Hybrid position/force control of flexible manipulators

  • Kim, Jin-Soo;Suzuki, Kuniaki;Konno, Atsushi;Uchiyama, Masaru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.408-411
    • /
    • 1995
  • In this paper, we discuss the force control of flexible manipulators. Since the force control of flexible manipulators with planar one or two links using the distributed-parameter modeling has been the subject of a considerable number of publications until now, real time computations of the force control schemes are possible. But, application of those control schemes to multi-link spatial manipulators is fairly complicated. In this paper, we apply a concise hybrid position/force control scheme for a flexible manipulators. We use a lumped-parameter modeling for the flexible manipulators. The Hamilton's principle is applied to derive the equations of motion for the system and then, state-space model is obtained by the Lagrange's method. Finally, comparison of simulation results with experimental results is given to show the performance of our method.

  • PDF

실시간 그래픽 디포메이션 알고리즘을 이용한 가상환경젱어 (The Virtual Environment Control using Real-time Graphic Deformation Algorithm)

  • 강원찬;김남오;최창주
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.309-314
    • /
    • 2004
  • In the established virtual-reality system, although it is possible to transact a faculty of sensation and graphic in a single PC, virtual object forcibly treated with rigid body for the reason of the huge amount of calculation, and the number of polygon is restricted. Furthermore, there is some difficulty in the financial aspect and a program field, because the existing virtual-reality system needs at least two workstations or super computers. In this study, the new force-reflecting algorithm called as "Proxy" and a finite element method of Hyperion are applied to this system in order to transact in real-time. Consequently, though the number of polygon, which brings about an obstacle is increased in the real-time graphic transaction, this system makes it possible to transact in the real-time, not being influenced by the size of the virtual object.

Real-time Obstacle Avoidance for Silvermate Robot

  • Choi, Kyung-Hyun;Kim, Chang-Jong;Nong, Minh-Ngoc
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1161-1166
    • /
    • 2007
  • This paper proposes the Elastic Force application on the obstacle avoidance of the Silvermate Robot. The method deals with the problem associated with the Silvermate robot driving to a goal configuration as avoiding obstacles. The initial trajectory of a robot is determined by a motion planner, and the trajectory modification is accomplished by adjusting the control points. The control points are obtained based on the elastic force approach. Consequently the trajectory of a robot is incrementally modified to maintain a smooth and adaptive trajectory in an environment with obstacles. The suggested algorithm drivers the robot to obstacle avoid in real-time. Finally, the simulation studies are carried out to illustrate the effectiveness of the proposed approach

  • PDF

Magnetic levitation control by attractive force compensation

  • Jeong, Nam-Soo;Kim, Sang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.355-359
    • /
    • 1992
  • This paper presents a procedure to design a real time control system for a magnetic levitation system based on the state space approach by adopting a control method compensating attractive force according to load variation of maglev vehicle. Also the paper has realized a robust control algorithm for the change of self-inductance parameters and the disturbance such as the change of mass of Maglev vehicles. The theoretical results are applied to the gap control problems of an attractive-type-magnetic levitation system and the effectiveness is proved by the implementation of digital control using 16 bits microcomputer.

  • PDF

무인자율차량의 실시간 충돌 회피 알고리즘 개발 (Development of a Real-Time Collision Avoidance Algorithm for eXperimental Autonomous Vehicle)

  • 최덕선
    • 전기학회논문지
    • /
    • 제56권7호
    • /
    • pp.1302-1308
    • /
    • 2007
  • In this paper, a real-time collision avoidance algorithm is proposed for experimental Autonomous Vehicle(XAV). To ensure real-time implementation, a virtual potential field is calculated in one dimensional space. The attractive force is generated by the steering command either transmitted in the remote control station or calculated in the Autonomous Navigation System(ANS) of the XAV. The repulsive force is generated by obstacle information obtained from Laser Range Finder(LRF) mounted on the XAV. Using these attractive and repulsive forces, modified steering, velocity and emergency stop commands are created to avoid obstacles and follow a planned path. The suggested algorithm is inserted as one component in the XAV system. Through various real experiments and technical demonstration using the XAV, the usefulness and practicality of the proposed algorithm are verified.

Orthogonalization principle for hybrid control of robot arms under geometric constraint

  • Arimoto, Suguru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.1-6
    • /
    • 1992
  • A principle of "orthogonalization" is proposed as an extended notion of hybrid (force and position) control for robot manipulators under geometric endpoint constraints. The principle realizes the hybrid control in a strict sense by letting position and velocity feedback signals be orthogonal in joint space to the contact force vector whose components are exerted at corresponding joints. This orthogonalization is executed via a projection matrix computed in real-time from a gradient of the equation of the surface in joint coordinates and hence both projected position and velocity feedback signals become perpendicular to the force vector that is normal to the surface at the contact point in joint space. To show the important role of the principle in control of robot manipulators, three basic problems are analyzed, the first is a hybrid trajectory tracking problem by means of a "modified hybrid computed torque method", the second is a model-based adaptive control problem for robot manipulators under geometric endpoint constraints, and the third is an iterative learning control problem. It is shown that the passivity of residual error dynamics of robots follows from the orthogonalization principle and it plays a crucial role in convergence properties of both positional and force error signals.force error signals.

  • PDF