• Title/Summary/Keyword: Real data

Search Result 15,760, Processing Time 0.042 seconds

Factors Influencing the Continuous Watching and Paid Sponsorship Intentions of YouTube Real-Time Broadcast Viewers: Based on the S-O-R Framework (유튜브 실시간 방송 시청자의 지속시청 및 유료후원 의도에 영향을 미치는 요인: S-O-R 프레임워크를 기반으로)

  • Kwon, Ji Yoon;Yang, Seon Uk;Yang, Sung-Byung
    • Knowledge Management Research
    • /
    • v.23 no.3
    • /
    • pp.285-311
    • /
    • 2022
  • In this study, based on the S-O-R framework, how individual's stimuli (i.e., video characteristics, YouTuber characteristics, real-time broadcasting characteristics of YouTube channel) form organisms (i.e., perceived usefulness, perceived pleasure, social presence), leading to viewers' responses (i.e., continuous watching intention, paid sponsorship intention) on real-time YouTube channels. For this purpose, a research model and hypotheses were constructed, and 369 questionnaire data collected from users of real-time broadcasting channel services on the YouTube platform were analyzed. Result findings confirmed that some video/YouTuber/real-time broadcasting characteristics significantly affect viewers' perceived usefulness/perceived pleasure/social presence, and further influence continuous watching/paid sponsorship intentions. Theoretical and practical implications of the findings are discussed in conclusion.

Performance Analysis of Sensor Network Real-Time Traffic for Factory Automation in Intranet Environment (인트라넷 환경에서의 공장자동화를 위한 센서 망 실시간 트래픽 성능 평가)

  • Song, Myoung-Gyu;Choo, Young-Yeol
    • Journal of Korea Multimedia Society
    • /
    • v.11 no.7
    • /
    • pp.1007-1015
    • /
    • 2008
  • In order to provide real-time data from sensors and instruments at manufacturing processes on web, we proposed a communication service model based on XML(eXtensible Markup Language). HTML(Hyper Text Markup Language) is inadequate for describing real-time data from manufacturing plants while it is suitable for display of non-real-time multimedia data on web. For applying XML-based web service of process data in Intranet environment, real-time performance of communication services was evaluated to provide the system design criteria. XML schema for the data presentation was proposed and its communication performance was evaluated by simulation in terms of transmission delay due to increased message length and processing delay for transformation of raw data into defined format. For transformation of raw data into XML format, we proposed two structures: one is the scheme where transformation is done at an SCC(Supervisory Control Computer) after receiving real-time data from instruments. the other is the scheme where transformation is carried out at instruments before the data are transmitted to the SCC. Performances of two structures were evaluated on a testbed under various conditions such as six packet sizes and offered loads of 20%, 50% and 80%, respectively. Test results show that proposed schemes are applicable to the systems in Ethernet 100BaseT network if total message traffic is less than 7 Mbps.

  • PDF

Design of The Environment for a Realtime Data Integration based on TMDR (TMDR 기반의 실시간 데이터 통합 환경 설계)

  • Jung, Kye-Dong;Hwang, Chi-Gon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.9
    • /
    • pp.1865-1872
    • /
    • 2009
  • This study suggests a method for extending XMDR to integrate and search legacy system. This extension blends MSO(Meta Semantic Ontology) for the management of metadata, ML(Meta Location) for the management of location information, and Topic Map which is the standard language used to represent semantic web. This study refers to it as TMDR(Topic Map MetaData Registry). As an intelligent layer, Topic Map functions like an index. However, if the data frequently changes, the efficiency of Topic Map may drop. To solve this problem, the proposed system represents the relation among metadata, the relation among real data, and the relation between metadata and real data as Topic Map. The represented Topic Map proposes a method to reduce the changing relation among real data caused by the relation among metadata.

The Design and Implementation of the SRTPIO Module for a Real-time Multimedia Data Transport (실시간 멀티미디어 데이타 전송을 위한 SRTPIO 모듈 설계 및 구현)

  • Nam, Sang-Jun;Lee, Byung-Rae;Kim, Tai-Woo;Kim, Tai-Yun
    • Journal of KIISE:Information Networking
    • /
    • v.28 no.4
    • /
    • pp.621-630
    • /
    • 2001
  • Recently, users' demands for multimedia service are increasing. But, server systems offer inefficient multimedia data service to users. In this paper, to transport multimedia data in the server system more efficiently, we propose the SRTPIO(Special RTP Input/Output) module that process the RTP(Real-time Transport Protocol) data in the kernel with the SIO(Special Input/Output) Mechanism. The SIO mechanism improve a transfer speed because it reduces overheads associated with data copying and context-switching between the user mode and the kernel mode occured in general server system in the kernel-level. The SRTPIO module, integrating the SIO mechanism and the RTP data processing in the kernel, support efficient multimedia data transfer architecture.

  • PDF

Implementation of an improved real-time object tracking algorithm using brightness feature information and color information of object

  • Kim, Hyung-Hoon;Cho, Jeong-Ran
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.5
    • /
    • pp.21-28
    • /
    • 2017
  • As technology related to digital imaging equipment is developed and generalized, digital imaging system is used for various purposes in fields of society. The object tracking technology from digital image data in real time is one of the core technologies required in various fields such as security system and robot system. Among the existing object tracking technologies, cam shift technology is a technique of tracking an object using color information of an object. Recently, digital image data using infrared camera functions are widely used due to various demands of digital image equipment. However, the existing cam shift method can not track objects in image data without color information. Our proposed tracking algorithm tracks the object by analyzing the color if valid color information exists in the digital image data, otherwise it generates the lightness feature information and tracks the object through it. The brightness feature information is generated from the ratio information of the width and the height of the area divided by the brightness. Experimental results shows that our tracking algorithm can track objects in real time not only in general image data including color information but also in image data captured by an infrared camera.

A Study on The Real-Time Data Collection/Analysis/Processing Intelligent IoT (실시간 데이터 수집/분석/처리를 위한 지능형 IoT)

  • Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.317-322
    • /
    • 2019
  • This study is based on big big data base for real-time collection/analysis/processing of data, creative analysis of data assets, and intelligent processing system based on IoT, which can measure distribution phase in real time. The mobile terminal uses the SDK of the provided device to measure the data information on the consumption of specific seafood production and distribution. We use the oneM2M protocol to store various kinds of information needed for seafood production, and implement a DB Server and a system that allows the administrator to manage the system using the UI.

Data Collection Management Program for Smart Factory (스마트팩토리를 위한 데이터 수집 관리 프로그램 개발)

  • Kim, Hyeon-Jin;Kim, Jin-Sa
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.509-515
    • /
    • 2022
  • As the 4th industrial revolution based on ICT is progressing in the manufacturing field, interest in building smart factories that can be flexible and customized according to customer demand is increasing. To this end, it is necessary to maximize the efficiency of factory by performing an automated process in real time through a network communication between engineers and equipment to be able to link the established IT system. It is also necessary to collect and store real-time data from heterogeneous facilities and to analyze and visualize a vast amount of data to utilize necessary information. Therefore, in this study, four types of controllers such as PLC, Arduino, Raspberry Pi, and embedded system, which are generally used to build a smart factory that can connect technologies such as artificial intelligence (AI), Internet of Things (IoT), and big data, are configured. This study was conducted for the development of a program that can collect and store data in real time to visualize and manage information. For communication verification by controller, data communication was implemented and verified with the data log in the program, and 3D monitoring was implemented and verified to check the process status such as planned quantity for each controller, actual quantity, production progress, operation rate, and defect rate.

Nano Technology Trend Analysis Using Google Trend and Data Mining Method for Nano-Informatics (나노 인포매틱스 기반 구축을 위한 구글 트렌드와 데이터 마이닝 기법을 활용한 나노 기술 트렌드 분석)

  • Shin, Minsoo;Park, Min-Gyu;Bae, Seong-Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • Our research is aimed at predicting recent trend and leading technology for the future and providing optimal Nano technology trend information by analyzing Nano technology trend. Under recent global market situation, Users' needs and the technology to meet these needs are changing in real time. At this point, Nano technology also needs measures to reduce cost and enhance efficiency in order not to fall behind the times. Therefore, research like trend analysis which uses search data to satisfy both aspects is required. This research consists of four steps. We collect data and select keywords in step 1, detect trends based on frequency and create visualization in step 2, and perform analysis using data mining in step 3. This research can be used to look for changes of trend from three perspectives. This research conducted analysis on changes of trend in terms of major classification, Nano technology of 30's, and key words which consist of relevant Nano technology. Second, it is possible to provide real-time information. Trend analysis using search data can provide information depending on the continuously changing market situation due to the real-time information which search data includes. Third, through comparative analysis it is possible to establish a useful corporate policy and strategy by apprehending the trend of the United States which has relatively advanced Nano technology. Therefore, trend analysis using search data like this research can suggest proper direction of policy which respond to market change in a real time, can be used as reference material, and can help reduce cost.

Prediction of Housing Price Index using Data Mining and Learning Techniques (데이터마이닝과 학습기법을 이용한 부동산가격지수 예측)

  • Lee, Jiyoung;Ryu, Jae Pil
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.8
    • /
    • pp.47-53
    • /
    • 2021
  • With increasing interest in the 4th industrial revolution, data-driven scientific methodologies have developed. However, there are limitations of data collection in the real estate field of research. In addition, as the public becomes more knowledgeable about the real estate market, the qualitative sentiment comes to play a bigger role in the real estate market. Therefore, we propose a method to collect quantitative data that reflects sentiment using text mining and k-means algorithms, rather than the existing source data, and to predict the direction of housing index through artificial neural network learning based on the collected data. Data from 2012 to 2019 is set as the training period and 2020 as the prediction period. It is expected that this study will contribute to the utilization of scientific methods such as artificial neural networks rather than the use of the classical methodology for real estate market participants in their decision making process.

Implementation of a Deep Learning based Realtime Fire Alarm System using a Data Augmentation (데이터 증강 학습 이용한 딥러닝 기반 실시간 화재경보 시스템 구현)

  • Kim, Chi-young;Lee, Hyeon-Su;Lee, Kwang-yeob
    • Journal of IKEEE
    • /
    • v.26 no.3
    • /
    • pp.468-474
    • /
    • 2022
  • In this paper, we propose a method to implement a real-time fire alarm system using deep learning. The deep learning image dataset for fire alarms acquired 1,500 sheets through the Internet. If various images acquired in a daily environment are learned as they are, there is a disadvantage that the learning accuracy is not high. In this paper, we propose a fire image data expansion method to improve learning accuracy. The data augmentation method learned a total of 2,100 sheets by adding 600 pieces of learning data using brightness control, blurring, and flame photo synthesis. The expanded data using the flame image synthesis method had a great influence on the accuracy improvement. A real-time fire detection system is a system that detects fires by applying deep learning to image data and transmits notifications to users. An app was developed to detect fires by analyzing images in real time using a model custom-learned from the YOLO V4 TINY model suitable for the Edge AI system and to inform users of the results. Approximately 10% accuracy improvement can be obtained compared to conventional methods when using the proposed data.