• 제목/요약/키워드: Real Variety Show

검색결과 131건 처리시간 0.026초

음식 군집분석을 통한 개인맞춤형 식이 코칭 기법 (A Personalized Dietary Coaching Method Using Food Clustering Analysis)

  • 오유리;최지은;김윤희
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권6호
    • /
    • pp.289-294
    • /
    • 2016
  • 현대인의 건강관리에 대한 관심이 증가하고 다양한 만성질환을 야기하는 식습관에 대한 중요성이 강조되고 있는 상황이다. 이에 따라 여러가지 모바일 및 웹시스템을 이용한 식단 관리 방법이 등장하고 있지만 이는 실제로 적용하기 어렵고 사용자의 상황을 반영하는 맞춤형 정보를 제공하지 않는다. 따라서 개인의 신체정보 및 상황을 반영하고 음식을 분석하여 실질적으로 사용자가 섭취 가능한 맞춤형 식단관리 및 추천 방법이 필요하다. 본 논문에서는 자기조직화지도를 이용하여 음식을 분석하고 이를 군집화하여 음식에 대한 데이터를 준비한다. 그리고 사용자의 신체정보 및 상황을 고려한 개인 맞춤형 기준을 반영하여 섭취하고 싶은 음식에 대한 피드백 및 대체음식 추천방법을 제안한다. 또한 실험을 통하여 일반적인 방법을 이용한 추천된 음식결과와 비교하여 제안된 방법의 입력 음식과 추천 음식의 거리가 짧다는 것을 통하여 영양적으로 유사한 음식이 추천됨을 증명하였다.

실시간 의료정보 보호 및 관리를 위한 플랫폼에 관한 연구 (Study of Platform for Real-Time Medical Information Protection and Management)

  • 정창원;이성권;주수종
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제3권8호
    • /
    • pp.245-250
    • /
    • 2014
  • 최근 의료기술의 발전으로 인하여 응급의료 서비스가 병원에서 가정으로 변화되고 있다. 이와 관련하여 예방 또는 조기진단을 위한 연구가 활발해지고 있다. 특히, 생체신호를 모니터링하여 다양한 u-헬스케어 응용 서비스에 적용하고 있다. 본 논문에서 제안하는 시스템은 다양한 센서로부터 측정된 의료정보 보호 및 보안 기술을 제안하고자 한다. 특히, 생체신호는 개인의 주요 정보이면서 프라이버시와 관련된 정보이기 때문에 보호 및 관리를 위해 2차원 코드화 기술인 QR 코드를 적용하였다. 클라이언트 단말에서는 QR 코드를 분석하여 확인할 수 있도록 하였다. 끝으로 제안한 플랫폼 상에서 의료영상정보와 생체신호의 통합 이미지 파일 생성과 배포를 확인하는 응용서비스를 통해 수행 결과를 보였다.

Analysis of Structure and Expression of Grapevine 2-oxoglutarate Oxygenase Genes in Response to Low Temperature

  • Kim, Seon Ae;Ahn, Soon Young;Yun, Hae Keun
    • 원예과학기술지
    • /
    • 제34권1호
    • /
    • pp.46-54
    • /
    • 2016
  • 2-Oxoglutarate (2OG) acts as a signaling molecule and plays a critical role in secondary metabolism in a variety of organisms, including plants. Six 2-oxoglutarate (2OG) and Fe(II) oxygenase (2OGO) genes, VlCE2OGO1 [Vitis labruscana 2-oxoglutarate (2OG) and Fe(II) oxygenase 1], VlCE2OGO2, VlCE2OGO3, VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6, which show different expression patterns upon transcriptome analysis of 'Campbell Early' grapevine exposed to low temperature for 4 weeks, were analyzed for their structure and expression. Comparison of the deduced amino acid sequences of the 2OGO genes from the V. labruscana transcripts revealed sequence similarities of 38.6% (VlCE2OGO1 and VlCE2OGO2) to 19.2% (VlCE2OGO2 and VlCE2OGO3). The lengths of these genes ranged from 1053 to 2298 bp, and they encoded 316 to 380 amino acids. The prediction of the secondary structure of the encoded proteins by Self-Optimized Prediction Method with Alignment (SOPMA) indicated that all the genes contained alpha helix (23.95 to 41.71%), extended strand (16 to 22.34%), beta turn (6.65 to 9.22%), and random coil (32.97 to 51.58%) in the analysis. Specific primers from unique regions in each gene obtained by alignment of nucleotide sequences were used in real time PCR for analysis of gene expression. All tested genes showed differential expression in grapevines exposed to low temperature. Of the six transcripts, VlCE2OGO1, VlCE2OGO2, and VlCE2OGO3 were up-regulated and VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6 were down-regulated in response to cold treatments at all tested time points. The 2OG genes can be used for elucidation of mechanisms of tolerance to cold and as valuable molecular genetic resources for selection in breeding programs for cold-hardy grapevines.

Two person Interaction Recognition Based on Effective Hybrid Learning

  • Ahmed, Minhaz Uddin;Kim, Yeong Hyeon;Kim, Jin Woo;Bashar, Md Rezaul;Rhee, Phill Kyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권2호
    • /
    • pp.751-770
    • /
    • 2019
  • Action recognition is an essential task in computer vision due to the variety of prospective applications, such as security surveillance, machine learning, and human-computer interaction. The availability of more video data than ever before and the lofty performance of deep convolutional neural networks also make it essential for action recognition in video. Unfortunately, limited crafted video features and the scarcity of benchmark datasets make it challenging to address the multi-person action recognition task in video data. In this work, we propose a deep convolutional neural network-based Effective Hybrid Learning (EHL) framework for two-person interaction classification in video data. Our approach exploits a pre-trained network model (the VGG16 from the University of Oxford Visual Geometry Group) and extends the Faster R-CNN (region-based convolutional neural network a state-of-the-art detector for image classification). We broaden a semi-supervised learning method combined with an active learning method to improve overall performance. Numerous types of two-person interactions exist in the real world, which makes this a challenging task. In our experiment, we consider a limited number of actions, such as hugging, fighting, linking arms, talking, and kidnapping in two environment such simple and complex. We show that our trained model with an active semi-supervised learning architecture gradually improves the performance. In a simple environment using an Intelligent Technology Laboratory (ITLab) dataset from Inha University, performance increased to 95.6% accuracy, and in a complex environment, performance reached 81% accuracy. Our method reduces data-labeling time, compared to supervised learning methods, for the ITLab dataset. We also conduct extensive experiment on Human Action Recognition benchmarks such as UT-Interaction dataset, HMDB51 dataset and obtain better performance than state-of-the-art approaches.

상황인식서비스를 위한 모델 기반의 프라이버시 염려 예측 (Model Based Approach to Estimating Privacy Concerns for Context-Aware Services)

  • 이연님;권오병
    • 지능정보연구
    • /
    • 제15권2호
    • /
    • pp.97-111
    • /
    • 2009
  • 상황인식은 지능공간의 핵심기술로 개인화 및 자동화된 서비스를 제공하는 데 있어 가장 유용한 방법 중 하나로 대두되고 있다. 그러나 대부분의 상황인식 서비스들은 실제적인 상용화로까지 이어지지 못하고 있으며 그 가장 큰 이유 중 하나로 지적되고 있는 것이 사용자의 프라이버시 염려이다. 또한 현재 제공되는 상황인식서비스의 종류 및 수준은 매우 제한적이고 한정적인 수준에 머무르고 있는데 이는 지금까지의 상황인식이 외면적이고 관찰 가능한 상황을 인지하는 데만 주력하였을 뿐 인간의 내면적이고 인지적인 상황은 상황정보로 고려하지 않았기 때문이다. 따라서 본 연구에서는 개인의 내면적인 정보인 프라이버시 염려 수준을 또 하나의 상황정보의 형태로 예측할 수 있는 방법론을 제안하고자 한다. 이를 위해 개인에게 가해지는 다양한 외부 자극 정보를 기본 상황정보로 하여 이미 검증된 프라이버시 염려 관련 사회심리학 모델베이스를 통해 특정 서비스에 대한 사용자의 프라이버시 염려 수준을 예측하는 접근법을 개발하였다. 본 연구에서 제안한 방법론의 타당성 및 실현 가능성을 검증하기 위해 상황인식으로 얻어진 자료 및 수집된 프라이버시 염려 관련 사회심리학 모델들을 가지고 예측한 프라이버시 염려 정도와 실제 조사한 프라이버시 염려 수준을 통계적 방법으로 비교하였다.

  • PDF

텍스트 마이닝을 이용한 2012년 한국대선 관련 트위터 분석 (Analysis of Twitter for 2012 South Korea Presidential Election by Text Mining Techniques)

  • 배정환;손지은;송민
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.141-156
    • /
    • 2013
  • 최근 소셜미디어는 전세계적 커뮤니케이션 도구로서 사용에 전문적인 지식이나 기술이 필요하지 않기 때문에 이용자들로 하여금 콘텐츠의 실시간 생산과 공유를 가능하게 하여 기존의 커뮤니케이션 양식을 새롭게 변화시키고 있다. 특히 새로운 소통매체로서 국내외의 사회적 이슈를 실시간으로 전파하면서 이용자들이 자신의 의견을 지인 및 대중과 소통하게 하여 크게는 사회적 변화의 가능성까지 야기하고 있다. 소셜미디어를 통한 정보주체의 변화로 인해 데이터는 더욱 방대해지고 '빅데이터'라 불리는 정보의 '초(超)범람'을 야기하였으며, 이러한 빅데이터는 사회적 실제를 이해하기 위한 새로운 기회이자 의미 있는 정보를 발굴해 내기 위한 새로운 연구분야로 각광받게 되었다. 빅데이터를 효율적으로 분석하기 위해 다양한 연구가 활발히 이루어지고 있다. 그러나 지금까지 소셜미디어를 대상으로 한 연구는 개괄적인 접근으로 제한된 분석에 국한되고 있다. 이를 적절히 해결하기 위해 본 연구에서는 트위터 상에서 실시간으로 방대하게 생성되는 빅스트림 데이터의 효율적 수집과 수집된 문헌의 다양한 분석을 통한 새로운 정보와 지식의 마이닝을 목표로 사회적 이슈를 포착하기 위한 실시간 트위터 트렌드 마이닝 시스템을 개발 하였다. 본 시스템은 단어의 동시출현 검색, 질의어에 의한 트위터 이용자 시각화, 두 이용자 사이의 유사도 계산, 트렌드 변화에 관한 토픽 모델링 그리고 멘션 기반 이용자 네트워크 분석의 기능들을 제공하고, 이를 통해 2012년 한국 대선을 대상으로 사례연구를 수행하였다. 본 연구를 위한 실험문헌은 2012년 10월 1일부터 2012년 10월 31일까지 약 3주간 1,737,969건의 트윗을 수집하여 구축되었다. 이 사례연구는 최신 기법을 사용하여 트위터에서 생성되는 사회적 트렌드를 마이닝 할 수 있게 했다는 점에서 주요한 의의가 있고, 이를 통해 트위터가 사회적 이슈의 변화를 효율적으로 추적하고 예측하기에 유용한 도구이며, 멘션 기반 네트워크는 트위터에서 발견할 수 있는 고유의 비가시적 네트워크로 이용자 네트워크의 또 다른 양상을 보여준다.

무선통신기반 열차간격제어를 위한 전처리 기반 속도프로파일 계산 알고리즘 (Preprocessing-based speed profile calculation algorithm for radio-based train control)

  • 오세찬;김경희;김민수
    • 한국산학기술학회논문지
    • /
    • 제16권9호
    • /
    • pp.6274-6281
    • /
    • 2015
  • 무선통신기반 열차제어시스템은 차상과 지상과의 양방향 무선통신을 기반으로 실시간 열차간격제어가 가능하므로 운전시격 단축 효과가 있으며 궤도회로를 사용하지 않기 때문에 설비투자를 절감 할 수 있다. 무선통신기반 열차제어시스템에서 가장 중요한 부분인 자동열차방호(ATP: Automatic Train Protection)는 실시간 열차위치 추적을 기반으로 선행열차와 후행열차간의 안전한 간격제어를 수행한다. 본 논문은 도시철도용 무선통신기반 열차제어시스템의 열차간격제어를 위한 전체적인 ATP 열차간격제어 알고리즘과 ATP의 처리속도 향상을 위해 전처리 기반 속도프로파일 계산 알고리즘을 제안한다. 제안된 속도프로파일 계산 알고리즘은 사전에 선로와 열차의 영구속도제한에 해당하는 프로파일을 미리 계산하여 가장제한적인 속도프로파일로 활용한다. 만약 운행 중 특정 노선 구간에 임시속도제한이 발생하는 경우 미리 계산된 영구속도프로파일에 임시속도제한을 반영하여 해당 구간의 속도프로파일을 업데이트함으로써 계산효율을 높일 수 있다. 제안된 속도프로파일 계산 알고리즘의 성능을 평가하기 위해 시간복잡도 O-notation으로 분석하였으며 그 결과 기존에 비해 시간 복잡도를 개선할 수 있음을 확인하였다. 또한 ATP 열차간격제어 검증을 위해 열차간격제어 시뮬레이터를 제작하였으며 실험결과를 통해 다양한 운영상황에서 안전한 열차간격제어가 이루어지고 있음을 확인하였다.

인터랙티브 전시 환경에서 개인화 마케팅 서비스를 위한 모바일 프레임워크 설계 (Designing Mobile Framework for Intelligent Personalized Marketing Service in Interactive Exhibition Space)

  • 배종환;소수환;최이권
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.59-69
    • /
    • 2012
  • 기존의 전시환경에서 전시 참여업체는 처음에 작성된 개인 정보를 사용하여 모든 관람객에게 동일한 마케팅 정보를 전달하게 된다. 즉, 전시 관람객의 선호도나 반응의 변화에 따른 적절한 대비가 어렵고 개인 별 선호 취향에 따른 개별 대응이 힘들다. 관람객 개개인에게 차별화된 맞춤형 서비스를 제공하기 위해서는 관람객 개개인의 의도를 인지할 수 있어야 하고, 그 인지된 정보를 기준으로 해서 선별적인 서비스를 제공해야 한다. 본 논문에서는 전시 공간에서 관람객 개개인의 선호도와 상황을 인식하고, 인식된 정보를 기반으로 하여 관람객 개인별로 가장 적합한 전시 참가 업체의 마케팅 정보나 부스 정보를 관람객이 소유한 스마트 폰을 통해 제공 하며, 전시 공간에 설치되어 있는 인터랙션이 가능한 디바이스들과 전시 관람객 개개인이 소지하고 있는 스마트 폰 간의 인터랙션 서비스를 제공하기 위한 모바일 프레임 워크를 설계하였다.

모던 웹 브라우저(Modern-Web-Browser) 기반 애플리케이션 성능분석을 위한 요소 연구 (Research for the Element to Analyze the Performance of Modern-Web-Browser Based Applications)

  • 박진태;김현국;문일영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 추계학술대회
    • /
    • pp.278-281
    • /
    • 2018
  • 초기의 웹 기술은 텍스트 위주의 정보를 브라우저를 통해 보여주는 것이었다. 하지만 웹 기술이 발전하면서 브라우저를 통해 대용량의 멀티미디어 데이터를 보여주는 것이 가능해졌다. 웹 기술이 센서 네트워크, 하드웨어 제어, 빅 데이터와 인공지능 서비스를 위한 데이터 수집 및 분석 등 다양한 분야에 적용되고 있다. 대표적으로 사물인터넷의 인터페이스에 웹 브라우저를 탑재해 HTTP 통신으로 센서를 제어하고, 정보를 사용자에게 제공하는 사물 웹 플랫폼에 대한 표준이 마련되었다. 또한, 최근에는 웹 어셈블리의 개발로 웹 브라우저에서 실행할 수 없었던 3D 객체, 가상/증강 현실 콘텐츠를 C계열의 네이티브 언어를 통해 실행 가능해졌다. 기존 웹 애플리케이션의 성능을 평가하는 요소는 퍼포먼스, 네트워크 리소스, 보안 등의 요소들이 있었다. 하지만 웹 애플리케이션이 적용되는 분야가 다양해진 만큼 이 요소들에 대한 재해석과 검토가 필요한 시점이다. 이에 본 논문에서는 웹 애플리케이션의 성능을 평가하는 요소들에 대한 분석을 진행하고자 한다. 각 요소들에 대한 분석과 주요점, 보완되어야 하는 사항 등을 검토하여, 웹 기반 애플리케이션 개발의 한 지표를 정립하고자 한다.

  • PDF

유전 알고리듬을 적용한 지능형 ATP 시스템 개발 (Development of Intelligent ATP System Using Genetic Algorithm)

  • 김태영
    • 지능정보연구
    • /
    • 제16권4호
    • /
    • pp.131-145
    • /
    • 2010
  • ERP, SCM 등과 같은 기업용 정보 시스템을 활용함에 있어, 고객의 문의에 따라 제품 판매 가능 유무와 가능일자를 계산하여 통보해 주는 지능형 ATP 시스템은 전산 정보를 활용하여 고객 만족도를 최대화할 수 있는 유용한 기능이라고 할 수 있다. 그렇지만 공급 사슬 환경에서 ATP 시스템을 적용하려고 할 경우, 고객이 문의해 온 Retailer에게 납품 가능한 모든 분배센터(Distribution Center)와 공장(Plant)의 미래 시점의 재고량 변화와 운송 능력 등을 모두 고려하여야 하므로 계산량이 방대한 NP-Complete 문제가 된다. 따라서 시스템 사용자가 빠른 시간 내에 해를 구하여 고객에게 결과를 알려 줄 수 있는 ATP 시스템의 개발은 공급 사슬 관리를 효과적으로 활용하기 위하여 반드시 필요한 일이라고 할 수 있다. 본 논문에서는 동적 생산 함수의 개념을 이용하여 비 정수 타임 랙을 고려하여 ATP 시스템을 모델링하고, 해당 수리 모형으로부터 효율적으로 해를 얻기 위하여 유전 알고리듬을 개발하였다. 비 정수 타임 랙을 활용한 ATP 시스템은 비 정수 타임 랙을 올림이나 내림을 통하여 정수화 시킨 후 모형 수립하는 기존의 방법보다 정교하게 현실을 반영할 수 있고, ATP 시스템을 위한 유전 알고리듬의 진화 시스템은 문제크기가 작은 것에서부터 큰 것까지 최적해에 매우 근사한 값을 매우 빠른 시간 내에 풀 수 있음을 알 수 있었다.