• Title/Summary/Keyword: Real Time Traffic Signal Control

Search Result 81, Processing Time 0.029 seconds

Development of Message Broker-Based Real-Time Control Method for Road Traffic Safety Facilities Equipment and Devices Integrated Management System

  • JeongHo Kho;Eum Han
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.1
    • /
    • pp.195-209
    • /
    • 2024
  • The current road traffic signal controller developed in the 1990s has limitations in flexibility and scalability due to power supply problems, various communication methods, and hierarchical black box structures for various equipment and devices installed to improve traffic safety for road users and autonomous cooperative driving. In this paper, we designed a road traffic safety facilities equipment and devices integrated management system that can cope with the rapidly changing future traffic environment by solving the using direct current(DC) and power supply problem through the power over ethernet(PoE) technology and centralized data-driven control through message broker technology. In addition, a data-driven real-time control method for road traffic safety facilities equipment and devices operating based on time series data was implemented and verified.

An Algorithm for Real-Traffic Signal Control at An Isolated-Intersection (실시간 신호제어알고리즘 개발에 관한 연구)

  • Shin, Eon-Kyo;Kim, Young-Chan;Lee, Jong-Man
    • Journal of Korean Society of Transportation
    • /
    • v.22 no.7 s.78
    • /
    • pp.161-167
    • /
    • 2004
  • While most or fixed-time control systems such as UTCS produce the signal timing plans that either maximizing bandwidth or minimizing a disutility index of delay and stops, cannot consider the fluctuation of traffic flow. One category of the traffic-response control systems, which make small changes on a predefined signal plan such as SCOOT, cannot be easily modified for feedback real-time control schemes based on observation of variables other than traffic flow. The other category, which decide to whether switch the traffic lights or not at each step of time as in PRODYN, does not adequately consider the relations between traffic flows and traffic lights at each step of time. In this paper we present a complete formulation that adequately consider the relations between traffic flows and traffic lights at each step of time. The formulation is a binary mixed integer linear programing (BMILP) that obtain traffic lights at each step for minimizing delay. Since numarical examples for application of the proposed model illustrated that the model adequately produced dynamic traffic signal plans minimizing delay at each step, the model may be expected to contribute to advanced transportation management systems (ATMS) for dynamic traffic signal control.

An Experimental Study on the Application of NTCIP to Korean Traffic Signal Control System (교통신호제어시스템 NTCIP 통신규약 적용성 실험 연구)

  • Go, Gwang-Yong;Jeong, Jun-Ha;Lee, Seung-Hwan;An, Gye-Hyeong
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.5 s.91
    • /
    • pp.19-33
    • /
    • 2006
  • This paper presents the results of an experimental study on the application of NTCIP protocol to Korean traffic signal control system. For this study the communication Protocol of the existing traffic signal control system was adjusted to meet NTCIP standard. Management information base for Korea real-time traffic signal control system, message library of OER, traffic control center management software supporting SNMP/SFMP Protocol, and agent softwares for local controllers were developed during the experimental study. The applicability test of the adjusted system by NTCIP standard was performed. Fifty eight Percent of communication packets were lost at 2.400bps communication speed, which made the operation impossible. The experimentations with communication speeds 4,800bps and 9,600bps did not cause problems. In conclusion, to apply the NTCIP standard to domestic real-time traffic control system, communication environments need to be upgraded to 4,800bps or higher.

Development of Real-time Traffic Signal Control Strategy for Coordinated Signalized Intersections under V2I Communication Environment (V2I 통신환경을 활용한 연동교차로 교통신호 실시간 제어 연구)

  • Han, Eum;Yun, Ilsoo;Lee, Sang Soo;Jang, Kitae;Park, Byungkyu
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.3
    • /
    • pp.59-71
    • /
    • 2018
  • This study was initiated to develop an optimal signal control algorithm for coordinated signalized intersections using individual vehicle's information which can be collected in a format of prove vehicle data (PVD) via V2I (Vehicle to Infrastructure) communication environment. For developing this signal optimization algorithm, three modules were developed for phase group length computation, split distribution, and phase sequence assignment. The simulation analysis using the microscopic simulation model, Vissim, was conducted for evaluating the effectiveness of the developed algorithm. The analysis result represented that the performance of the developed algorithm is far superior to that of the fixed coordinated signal control method which is the most common signal control method for coordinated signalized intersections in Korea.

Development of the Traffic Actuation Signal Control System Based on Fuzzy Logic on an Arterial Street (Fuzzy Logic을 적용한 간선도로 상의 교통감응 신호제어)

  • 진선미;김성호;도철웅
    • Journal of Korean Society of Transportation
    • /
    • v.21 no.3
    • /
    • pp.71-83
    • /
    • 2003
  • An arterial street control is performed for the purpose of the progression of a traffic flow using the arterial. However during the progression in the arterial, the change according to the time is one of the most representative problems occurring at a signal plan. This paper intends to efficiently operate the arterial progression by applying fuzzy logic, which is thought to be the most possible one in the inference as that of the human logic, to the traffic responsive control system. Fuzzy Logic controller is appliable to the daily human language (linguistic). can be dealt with the uncertain traffic data and is useful on planning the signal control to sensitively confront the randomly changing traffic condition. This study, based on the signal control part of the isolated intersection in "A Development of a Real-time, Traffic Adaptive Control Scheme Through VIDs"(Seong Ho. Kim. 1996). suggested the strategy for the progression control in the arterial and analyzed its effect by comparing the effect of the existing control method. In addition, the study compared each effect by using TRAF-NETSIM which is the traffic simulation software to analyze each control method.

A Comparative Evaluation of Confidence of Vehicle-Dectetor Informations for Real-Time Traffic Signal Control. (실시간신호제어를 위한 차량검지기 정보의 신뢰성 비교평가)

  • 오영태;이철기
    • Journal of Korean Society of Transportation
    • /
    • v.14 no.3
    • /
    • pp.91-125
    • /
    • 1996
  • The purpose of this paper is comparatively to evaluate the confidence of Vehicle-Detector informations for various detectors in order to test to be possible the application of these to real time traffic signal control. The detectors which are tested for this study are Circle-Shaped Loop, Ultrasonic, Microwave and Image detector. The tested items for each detectors are traffic volume, degree of saturation for through and left turn movement, speed and queue length, etc. These items for each are tested at the field according to several situations, such as dry day, raining day, night and daytime. The result of these tests are performed comparative analysis and statistical examination in order to increase the confidence of the experiments.

  • PDF

Adaptive Packet Scheduling Scheme to Support Real-time Traffic in WLAN Mesh Networks

  • Zhu, Rongb;Qin, Yingying;Lai, Chin-Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.9
    • /
    • pp.1492-1512
    • /
    • 2011
  • Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.

Analysis of Distributed DDQ for QoS Router

  • Kim, Ki-Cheon
    • ETRI Journal
    • /
    • v.28 no.1
    • /
    • pp.31-44
    • /
    • 2006
  • In a packet switching network, congestion is unavoidable and affects the quality of real-time traffic with such problems as delay and packet loss. Packet fair queuing (PFQ) algorithms are well-known solutions for quality-of-service (QoS) guarantee by packet scheduling. Our approach is different from previous algorithms in that it uses hardware time achieved by sampling a counter triggered by a periodic clock signal. This clock signal can be provided to all the modules of a routing system to get synchronization. In this architecture, a variant of the PFQ algorithm, called digitized delay queuing (DDQ), can be distributed on many line interface modules. We derive the delay bounds in a single processor system and in a distributed architecture. The definition of traffic contribution improves the simplicity of the mathematical models. The effect of different time between modules in a distributed architecture is the key idea for understanding the delay behavior of a routing system. The number of bins required for the DDQ algorithm is also derived to make the system configuration clear. The analytical models developed in this paper form the basis of improvement and application to a combined input and output queuing (CIOQ) router architecture for a higher speed QoS network.

  • PDF

An approach for traffic signal control using RFID sensors

  • Seo, Gang-Do;Cho, Jin-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.236-244
    • /
    • 2008
  • The Korean government is building several futuristic cities, ubiquitous City (u-City), with the latest information technology (IT) infrastructure and "ubiquitous" environment. In the "u-City", Intelligent Transportation System (ITS) will be one of the important services. This study proposed a traffic responsive urban traffic control system applicable in those u-City, using RFID (Radio Frequency Identification) technology to get traffic information. And, we proposed a predictive control model using the real time traffic information achieved from the proposed system. A simulation example is provided to demonstrate the applicability of the proposed system and model.

Application of Fuzzy Transition Timed Petri Net for Discrete Event Dynamic Systems (퍼지 트랜지션 시간 페트리 네트의 이산 사건 시스템에 응용)

  • 모영승;김진권;김정철;탁상아;황형수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.364-364
    • /
    • 2000
  • Timed Petri Net(TPN) is one of methods to model and to analyze Discrete Event Dynamic Systems(DEDSs) with real time values. It has two time values, earliest firing time ($\alpha$$_{i}$) and latest firing time ($\beta$$_{I}$) for the each transition. A transition of TPN is fired at arbitrary time of time interval ($\alpha$$_{I}$, $\beta$$_{i}$). Uncertainty of firing time gives difficulty to analyze and estimate a modeled system. In this paper, we proposed the Fuzzy Transition Timed Petri Net(FTTPN) with fuzzy theory to determine the optimal transition time (${\gamma}$$_{i}$). The transition firing time (${\gamma}$$_{i}$) of FTTPN is determined from fuzzy controller which is modeled with information of state transition. Each of the traffic signal controllers are modeled using the proposed method and timed petri net. And its Performance is evaluated by simulation of traffic signal controller. controller.

  • PDF