• Title/Summary/Keyword: Real Time Monitoring and Detection Technology for Landslides

Search Result 4, Processing Time 0.018 seconds

Business Ecosystem-focused Commercialization Strategy for Real-time Monitoring and Detection Technology for Landslides (실시간 산사태 모니터링 및 탐지기술에 대한 비즈니스 생태계 기반 기술사업화 전략 연구)

  • Sawng, Yeong-Wha;Lim, Dong-Hyun;Chae, Byung-Gon;Choi, Junghae
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.223-233
    • /
    • 2016
  • This study establishes a commercialization strategy for technology that can monitor and detect landslides in real time. An effective commercialization strategy was sought through both qualitative and quantitative analyses. The qualitative analysis considered the business environment in detail, while the quantitative analysis examined technologically strong and weak areas by visualizing the links between IPC (International Patent Classification) code structure and patent applicants. The results from both analyses are considered together, with particular attention paid to the business environment. The resulting integrated analysis comprehensively explores the degree of technological development and the current state of real-time monitoring and detection technology for landslides. The integrated analysis identified complementary assets in the business environment, as there is strong development and many research entities in this area. This suggests positive reinforcement for commercialization with two sub-strategies: (1) exploring demand with complementary assets, and (2) providing technology information for explored demand, which should facilitate successful commercialization. Exploiting this positive reinforcement for technology commercialization could reduce the high uncertainty of the technology and the market, and thus increase the probability of successful commercialization. It is also expected to contribute to long-term success by strengthening collaboration between the supply and demand sides.

Strategy of Technology Development for Landslide Hazards by Patent Analysis (특허 분석을 통한 산사태재해 관련 기술개발 전략)

  • Bae, Khee Su;Sawng, Yeong-Wha;Chae, Byung-Gon;Choi, Junghae;Son, Jeong Keun
    • The Journal of Engineering Geology
    • /
    • v.24 no.4
    • /
    • pp.615-629
    • /
    • 2014
  • This study analyzed existing patents related to real-time monitoring and detection technology for landslides on natural terrain. The purpose of patent analysis is to understand landslide hazard technology trends and to develop new advanced technology. This study searched patent data using key words related to landslide monitoring and detection in Korea, the USA, Japan, China (Hong Kong), Europe, and Taiwan. The patents were divided into five main categories and five to seven subcategories in each main category and analyzed by year, country, and applicants. The results were utilized to derive a portfolio of promising technologies for each country. The analysis results will also contribute to the development of more effective research strategies and to categorize research findings from previous studies on landslide hazards.

Slope Movement Detection using Ubiquitous Sensor Network (USN을 이용한 사면거동 탐지)

  • Chang, K.T.;Ho, Albert;Jung, Chun-Suk;Jung, Hoon
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.2
    • /
    • pp.61-66
    • /
    • 2008
  • More than 70% of Korea consists of mountainous area and during the construction of roads and railroads many cut-slopes are inevitably formed. A number of environmental factors, such as the rainy season and frost heave during winter/thaw during spring, can result in rock falls and landslides. The failure of slopes is increasing every year and can cause damage to vehicles, personal injury and even fatality. In order to help protect people and property, there is a need for real-time monitoring systems to detect the early stages of slope failures. In this respect, the GMG has been using Translation Rotation Settlement (TRS) sensor units installed on slopes to monitor movement in real-time. However, the data lines of this system are vulnerable and the whole system can be damaged by a single lightning strike. In order to overcome this, GMG have proposed the use of Ubiquitous Sensor Networks (USN). The adoption of a USN system in lieu of data cables can help to minimize the risk of lightning damage and improve the reliability of slope monitoring systems.

  • PDF

Slope Movement Detection using Ubiquitous Sensor Network

  • Jung, Hoon;Kim, Jung-Yoon;Chang, Ki-Tae;Jung, Chun-Suk
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.143-148
    • /
    • 2009
  • About 70% of Korea consists of mountainous areas, and during the construction of many roads and railroads, cut slopes are inevitably formed. The rainy season, frost heaving in winter, and thawing in spring can all cause rockfalls and landslides. The failure of these slopes is increasing every year, causing damage to vehicles, personal injury and even death. To protect people and property from such damage, a real-time monitoring system is needed to detect the early stages of slope failures. The GMG placed TRS sensor units in the slopes to monitor them in real-time. But due to its reliance on data lines and power lines, the system is vulnerable to lightning damage. The whole system can be damaged by a single lighting strike. Consequently, for the purposes of this paper we propose the use of the Ubiquitous Sensor Network (USN) which follows the IEEE 802.1.4. By using the USN system we can minimize lightning damage and can monitor the movement of the slopes consistently.