• Title/Summary/Keyword: Ready-Mixed Concrete

Search Result 228, Processing Time 0.019 seconds

Study on preparation of precipitated calcium carbonate using recycling water of ready-mixed Concrete (레미콘 회수수를 이용한 침강성 탄산칼슘 제조에 관한 연구)

  • Shin, Jae Ran;Kim, Jae Gang;Kim, Hae Gi;Kang, Ho Jong
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.232-238
    • /
    • 2016
  • In this study, a liquid carbonation method was applied for producing precipitate calcium carbonate by liquid-liquid reaction. Also a shuttle mechanism of wet chemical absorption using MEA was utilized. The high concentration $CO_2$(A) and exhaust gas(B) was used for collecting carbon dioxide in the 30% MEA aqueous solution, and $CO_2$ was fixed with rate of 0.35 mg of $CO_2$ per mg of sludge through the liquid carbonation process. It was found from SEM data that calcium carbonate was mainly made up with spherical vaerite with the mixing of a small quantity of calcite.

A Study on the Satisfaction in Relation to Size Fit and Clothing Design of Nurse Uniform (간호사복의 치수적합성과 디자인 만족도에 관한 연구)

  • 김선희;류은정
    • Journal of the Korean Home Economics Association
    • /
    • v.40 no.8
    • /
    • pp.183-190
    • /
    • 2002
  • This study was aimed at investigating the satisfaction in relation to clothing design and size-fit for nurse uniform in Korea. The subjects were 986 female nurses working in 12 hospitals selected by convenience sampling. The data were collected by questionnaires. Using SPSS package, frequency, percentage, t-test, ANOVA and SNK test were conducted. The results were divided into 2 categories as fellows; 1) Results of the satisfaction with the size-fit and size system of the nurse uniforms : Nurses satisfied at the individual size-fit system than ready-made size system. There was a considerable difference of the satisfaction with the size-fit depending on age and clinical career. And more than half of nurses were needed the concrete and precise size system. 2) Results of the actual design condition and clothing satisfaction : Nurses wore two-piece pants suits more than classical designed one-piece style. The princess-line, convertible collar and yoke design were preferred for nurse uniform with the high satisfaction. 41.6 percent of respondents used the cap obligatory and the white color and a patterned textile were generally used. The used fabrics were only polyester and cotton/polyester mixed spinning.

Design of Cost Management System for Ready Mixed Concrete Manufacturers (레미콘 제조업체의 원가관리 시스템 설계)

  • Moon, Byeong-Kil;Moon, Yang-Sae;Kim, Sang-Pil;Kim, Jin-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2012.06b
    • /
    • pp.51-53
    • /
    • 2012
  • 기업의 목적은 이익을 창출하는 데 있다. 이를 위해서는 제품별 생산성을 높여 원가를 절감해야 하지만, 대부분의 레미콘 제조업체는 원가관리를 운영하지 못하고 있는 실정이다. 레미콘 제조업체의 제품공정은 단순하나 제조원가 중 직접재료비가 약 70% 이상으로 큰 비중을 차지하고 있다. 따라서 원가절감의 여부가 경영성과에 미치는 영향이 크다고 할 수 있다. 또한, 정부 공공기관 등은 예산을 안정적으로 관리하고, 부당한 지출을 방지하기 위하여 엄격하게 원가계산제도를 운영하고 있다. 레미콘 제조업체의 원가관리를 위해서는 우선적으로 업체 특성에 맞는 원가관리 시스템을 구축하여야 한다. 이를 위해서 본 논문에서는 레미콘 제조업체의 특성에 맞는 원가관리 시스템을 설계하였다. 시스템 설계는 전체 프레임워크, 처리 절차, 데이터베이스 스키마와 자료구조, 입력 출력 설계로 구성하였다. 원가계산의 절차는 정부원가계산 제도를 이용하여 설계하였다. 본 논문의 성과로, 계약자는 원가정보를 신뢰하며 이용할 수 있고, 레미콘 제조업체의 원가정보 표준화에 기여할 것으로 기대한다.

Optimal location of Batcher Plant using Modified Steiner point (수정된 Steiner Point를 이용한 Batcher Plant의 최적 위치 선정)

  • Ha, Kwon-Yeol;Lee, Sang-Joong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.10
    • /
    • pp.39-46
    • /
    • 2015
  • REMICON(Ready Mixed Concrete), the most essential material of construction work, is produced from facility called "Batcher plant." In order to produce Remicon, Batcher Plant needs to be supplied with basic raw material such as ballast, sand, cement, admixture and water. In remicon industry, overland transport vehicles are used during the whole manufacturing process from producing to infilling at the construction site. Thus, the transportation cost sums up be to 20 percent of whole manufacturing cost and transport capacity and distance travelled have direct and major effect on manufacturing costs. This paper suggests a method to find optimal location of batcher plant using modified Steiner point, suggesting the most effective and flexible connection through among construction site, aggregate, cement and remicon producing plant. This paper also proposes reducing of transport cost at maximum 60% by calculation through optimized plant location. The modified Steiner point theory proposed in this paper also can be applied to optimal location of a $2^{ry}$ substation or MCC panel for minimizing of power loss, voltage drop, line distance and etc.

An Influence of Unit-Water Content Distribution in Ready-Mixed Concrete on Strength and Durability of Concrete (레미콘 단위수량 산포가 콘크리트 강도 및 내구성에 미치는 영향)

  • Woo, Young-Je;Lee, Han-Seung;Jung, Sang-Hwa
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.3
    • /
    • pp.375-381
    • /
    • 2008
  • Various problems such as durability degradation may happen when extra water is added to concrete. Because of these reasons, the change of water content is managed by using rapid evaluation method of unit water content such as electric capacity method, heat drying method making use of micro wave, unit capacity mass method among various methods. Especially, in Japan, guidance for the change of water content ($\pm$ 10, 15, 20 kg/$m^3$ etc.) were regulated and used. However, it is the real situation that the guidance which were regulated in South Korea evaluate suitability only considering production and measurement error under the circumstances which are not considering the degree of durability degradation. Therefore, this study tries to investigate the influence of addition of extra water in the concrete on the durability degradation of concrete when it was added by artificial manipulation or by management error. From the test results, a guideline of the contents of extra water for the quality control is suggested with the consideration of the degree of durability degradation and the probable error resulted from the addition of extra water. The contents of extra water for tests are set as 0, 15, 25, 35 kg/$m^3$. To examine the durability degradation of concrete, freezing and thawing, carbonation, chloride penetration and compressive strength are tested.

Analysis of the Characteristics of Manufactured Concrete, according to the Type of Admixture used when Remixing and Placing it (혼화제 종류별로 제조된 콘크리트의 재 혼합 타설시 특성 분석)

  • Ryu, Hyun-Gi;Shin, Sang-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.5
    • /
    • pp.95-102
    • /
    • 2010
  • In recent years, the demand for the development of high quality and cost effective materials, as well as the competition to ensure a diverse and sufficient amount of ready-mixed concrete, has been increasing rapidly. In this experiment, concretes made with different admixtures are blended with each other in different combinations and ratios, in order to identify potential problems. The first test was a slump level test, in which all of the concretes met the required numbers, as they also did in the test for air content. Plain organic acid concrete scored the highest in bleeding amount, but organic acid mix in general showed a similar outcome. In the early measurement of compressive strength, plain naphthalene concrete was the strongest. Of the blends, the 5:5 mix of organic acid and naphthalene was the strongest. In the standard measurement, the 5:5 mix of naphthalene and lignin was the strongest. Tensile strength tests revealed similar results. Length change rate proved to be greater in blended concrete than in plain concrete, and dry shrinkage rate was highest in the 7:3 ratio blends. Through SEM photo analysis, it was confirmed that the 7:3 ratio blends contained more micro-voids. In conclusion, with the exception of a specific few combinations, it was found that the blending of different types of concrete is undesirable due to the delayed coagulation time as well as the early decrease in strength.

Feasibility Analysis of Rapid Quality Evaluation Method for Blast Furnace Slag Using Hydrometer (Hydrometer를 이용한 고로슬래그 미분말의 분말도 품질 신속평가 가능성 분석)

  • Han, Cheon-Goo;Joo, Eun-Hui
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.1
    • /
    • pp.43-49
    • /
    • 2018
  • The aim of the research is to analyze the feasibility of rapid quality evaluation method for blast furnace slag using hydrometer based on the former research of the prediction method for concrete compressive strength using hydrometer. Using this method, it is expected to provide a new application for blast furnace slag quality evaluation easily and rapidly during the receiving inspection. According to the experimental results, the settling time period of hydrometer was delayed with increased fineness of blast furnace slag. By using the regression equation of y = 198 120 x - 193 936(R=0.9398) obtained from the correlation between density of suspension at three minutes and fineness, it was possible to evaluate the quality of blast furnace slag fineness rapidly. Therefore, for ready-mixed concrete receiving inspection, the suggested method can be used as a cheap, a simple, and a rapid inspection method.

An Experimental Study on the Engineering Characteristics of Ternary Lightweight aggregate Mortar Using Recycling Water (회수수를 사용한 3성분계 경량 골재 모르타르의 공학적 특성에 관한 실험적 연구)

  • Lee, Jae-In;Bae, Sung-Ho;Kim, Ji-Hwan;Choi, Se-Jin
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.48-55
    • /
    • 2022
  • This study uses the recovered water as mixing water and artificial lightweight aggregate pre-wetting water as part of a study to increase the recycling rate and reduce greenhouse gas of the ready-mixed concrete recovered during the concrete transport process, and cement fine powder of blast furnace slag(BFS) and fly ash(FA). The engineering characteristics of the three-component lightweight aggregate mortar used as a substitute were reviewed. For this purpose, the flow, dry unit mass, compressive strength, drying shrinkage, neutralization depth, and chloride ion penetration resistance of the three-component lightweight aggregate mortar were measured. When used together with the formulation, when 15 % of BFS and 5 % of FA were used, it was found to be positive in improving the compressive strength and durability of the mortar.

A Study on the Development of New SRC Lining Board (신형 SRC 복공판의 개발에 관한 연구)

  • Kown Beom-Jun;Park Do-Uk;Kim Yong-Su
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.4 s.26
    • /
    • pp.172-180
    • /
    • 2005
  • The purpose of this study is to suggest a new SRC(Steel Ready mixed Concrete) lining board. The research method of this study includes problem analysis of existing lining boards a constant load test and a fatigue test. The results of this study are as follow : 1) the suggested new lining board improves the function and reduce slipperiness than existing lining boards. 2) the strength of the new SRC lining board is analyzed as superior than existing lining boards from the results of constant load test and fatigue test.

An Analysis of the Characteristics of Environmental Impact for PSC Beam Bridges using Life Cycle Assessment (LCA 기반 PSC 교량의 환경부하 특성분석에 대한 연구)

  • Cho, Namho;Yun, Won Gun;Lee, Wan Ryul;Kim, Kyong Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.2
    • /
    • pp.297-305
    • /
    • 2016
  • This study aims to analyze characteristics of environmental load for the construction phase of PSC beam bridge based on Life Cycle Assessment. For detail computation of environmental load, the construction materials and energy consumption are derived from the BOQ, also connecting with environmental load by Korea LCI Database Information Network. The characteristic of environmental impact was analyzed by 25 cases and cut-off ratio was 80% to 94%. The result sorted by construction materials revealed that environmental load were 53.3% for ready-mixed concrete, 9.6% for wire rod, 7.8% for rebar, 6.8% for cement, 5.5% for plywood, and 5.2% for energy. Furthermore, the result of environmental impact revealed that 45.5% for global warming, 30.4% for abiotic resources depletion, 10.5% for human toxicity, and 8.9% for photochemical oxidant creation. In the future, we can make a decision considering environmental load based on LCA at design phase.