The visual span refers to the number of letters that can be accurately recognized without moving one's eyes. The size of the visual span is affected by sensory factors such as perimetric complexity, crowding, and mislocation of letters. Korean Hangul utilizes rather unique alphabetic-syllabary writing system, quite different from English and Chinese writing systems. Due to this combinatorial nature of the script, the visual span for Hangul characters can also be affected by the letter type (e.g., CV vs CVCC). The present study examined the effect of syllable complexity on the visual span for Hangul by comparing letter recognition accuracy across four letter type conditions (C only, CV, CVC, and CVCC). We also aimed to determine the meaningful letter type(s) that is associated with differences in reading abilities in Korean. Using a trigram presentation method, we found that overall recognition accuracy declined as syllable complexity increased. However, the visual span for CVC type was greater than that for CV type, suggesting that the effect is not necessarily linear, and that there might be other factors affecting the visual span for these types of letters. C and CV type showed fairly strong positive correlations with reading comprehension, suggesting that these might be the meaningful units for measuring visual span in relating to reading abilities.
This study investigated news comprehension via the social media by comparing the reading of a news story on the news paper. A news story on the social media was suggested to present information in a conversational form, which differs from a traditional reporting style. To compare the different forms of news information presentation, two conditions were created: in a control condition, a news story was written in a traditional reporting form. In the experimental condition, the same news story was constructed in a conversational form. Participants were assigned randomly in one of two conditions. They read the news story and afterwards, they were asked to recall firstly, the core idea of the news story, secondly the whole news story, and finally to answer to the 10 questions that assessed how well they learned from the news story. Participants' responses were content-analyzed and produced six variables, the extent to recall the core idea, the extent to recall the whole story, the extent to recall wrong information, the extent to recall additional information, the extent to recall causally related contents in general, and finally the extent to recall causally related contents in story-specific. Analyses on the six variables revealed that the group in the news paper condition recalled more core idea, the whole story, and additional information than the group in the social media. But the news paper condition recalled less of wrong information than the group in the social media condition. Additionally, the news paper condition learned more than the group in the social media. Regarding the recall of causally related contents, the general causal relationships were recalled more in the group in the social media condition but the story specific causal relationships were recalled more in the group in the news paper condition. The findings seemingly indicated that a traditional news reporting contributes to news story comprehension more than the conversational form. Authors however added discussions and advised that the findings needed to be read under caution.
The recent growing popularity of statistical methods in machine translation requires much more large parallel corpora. A Korean-English parallel corpus, however, is not yet enoughly available, little research on this subject is being conducted. In this paper we present a hybrid method of aligning sentences for Korean-English parallel corpora. We use bilingual news wire web pages, reading comprehension materials for English learners, computer-related technical documents and help files of localized software for building a Korean-English parallel corpus. Our hybrid method combines sentence-length based and word-correspondence based methods. We show the results of experimentation and evaluate them. Alignment results from using a full translation model are very encouraging, especially when we apply alignment results to an SMT system: 0.66% for BLEU score and 9.94% for NIST score improvement compared to the previous method.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.645-648
/
2018
기계 독해는 기계가 주어진 본문을 이해하고 질문에 대한 정답을 본문 내에서 찾아내는 문제이다. 본 논문은 질문 유형을 추가하여 정답 선택에 도움을 주도록 설계하였다. 우리는 Person, Location, Date, Number, Why, How, What, Others와 같이 8개의 질문 유형을 나누고 이들이 본문의 중요 자질들과 Attention이 일어나도록 설계하였다. 제안 방법의 평가를 위해 SQuAD의 한국어 번역 데이터와 한국어 Wikipedia로 구축한 K-QuAD 데이터 셋으로 실험을 진행하였다. 제안한 모델의 실험 결과 부분 일치를 인정하여, EM 84.650%, F1 86.208%로 K-QuAD 제안 논문 실험인 BiDAF 모델보다 더 나은 성능을 얻었다.
Annual Conference on Human and Language Technology
/
2018.10a
/
pp.35-39
/
2018
챗봇은 사람과 기계가 자연어로 된 대화를 주고받는 시스템이다. 최근 대화형 인공지능 비서 시스템이 상용화되면서 일반적인 대화와 질의응답을 함께 처리해야할 필요성이 늘어나고 있다. 본 논문에서는 기계독해 기반 질의응답과 Transformer 기반 자연어 생성 모델을 함께 사용하여 하나의 모델에서 일반적인 대화와 질의응답을 함께 하는 기계독해 기반 질의응답 챗봇을 제안한다. 제안 모델은 기계독해 모델에 일반대화를 판단하는 옵션을 추가하여 기계독해를 하면서 자체적으로 문장을 분류하고, 기계독해 결과를 통해 자연어로 된 문장을 생성한다. 실험 결과 일반적인 대화 문장과 질의를 높은 성능으로 구별하면서 기계독해의 성능은 유지하였고 자연어 생성에서도 분류에 맞는 응답을 생성하였다.
The main purpose of this paper is to present selection criteria for ROK Airforce pilot training candidates in order to save costs involved in sequential pilot training. We use classification models such Decision Tree, Logistic Regression and Neural Network based on aptitude test results of 288 ROK Air Force applicants in 1994-1996. Different models are compared in terms of classification accuracy, ROC and Lift-value. Neural network is evaluated as the best model for each sequential flight test result while Logistic regression model outperforms the rest of them for discriminating the last flight test result. Therefore we suggest a pilot selection criterion based on this logistic regression. Overall. we find that the factors such as Attention Sharing, Speed Tracking, Machine Comprehension and Instrument Reading Ability having significant effects on the flight results. We expect that the use of our criteria can increase the effectiveness of flight resources.
Proceedings of the Korea Information Processing Society Conference
/
2019.10a
/
pp.922-925
/
2019
기계 독해 기술은 기계가 주어진 비정형 문서 내에서 사용자의 질문을 이해하여 답변을 하는 기술로써, 챗봇이나 스마트 스피커 등, 사용자 질의응답 분야에서 핵심이 되는 기술 중 하나이다. 최근 딥러닝을 이용한 기학습 언어모델과 전이학습을 통해 사람의 기계 독해 능력을 뛰어넘는 방법론들이 제시되었다. 하지만 이러한 방식은 사람이 인식하는 질의응답 방법과 달리, 개체가 가지는 의미론(Semantic) 관점보다는 토큰 단위로 분리된 개체의 형태(Syntactic)와 등장하는 문맥(Context)에 의존해 기계 독해를 수행하였다. 본 논문에서는 기존의 높은 성능을 나타내던 기학습 언어모델에 대규모 지식그래프에 등장하는 개체 정보를 함께 학습함으로써, 의미학적 정보를 반영하는 방법을 제시한다. 본 논문이 제시하는 방법을 통해 기존 방법보다 기계 독해 분야에서 높은 성능향상 결과를 얻을 수 있었다.
Park, Cheoneum;Kim, Myungji;Park, Soyoon;Lim, Seungyoung;Lee, Jooyoul;Lee, Changki
ETRI Journal
/
v.42
no.6
/
pp.899-911
/
2020
The data in tables are accurate and rich in information, which facilitates the performance of information extraction and question answering (QA) tasks. TableQA, which is based on tables, solves problems by understanding the table structure and searching for answers to questions. In this paper, we introduce both novice and intermediate Korean TableQA tasks that involve deducing the answer to a question from structured tabular data and using it to build a question answering pair. To solve Korean TableQA tasks, we use S3-NET, which has shown a good performance in machine reading comprehension (MRC), and propose a method of converting structured tabular data into a record format suitable for MRC. Our experimental results show that the proposed method outperforms a baseline in both the novice task (exact match (EM) 96.48% and F1 97.06%) and intermediate task (EM 99.30% and F1 99.55%).
Annual Conference on Human and Language Technology
/
2022.10a
/
pp.541-544
/
2022
코로나19 이후로 교육의 형태가 오프라인에서 온라인으로 변화되었다. 하지만 온라인 강의 교육 서비스는 실시간 소통의 한계를 가지고 있다. 이러한 단점을 해결하기 위해 본 논문에서는 기계독해 기반 실시간 강의 질의응답 시스템을 제안한다. 본 논문연구에서는 질의응답 시스템을 만들기 위해 KorQuAD 1.0 학습 데이터를 활용해 BERT를 fine-tuning 했고 그 결과를 이용해 기계독해 기반 질의응답 시스템을 구축했다. 하지만 이렇게 구축된 챗봇은 강의 내용에 대한 질의응답에 최적화되어있지 않기 때문에 강의 내용 질의응답에 관한 문장형 데이터 셋을 구축하고 추가 학습을 수행하여 문제를 해결했다. 실험 결과 질의응답 표를 통해 문장형 답변에 대한 성능이 개선된 것을 확인할 수 있다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.31-35
/
2021
기계독해 시스템은 주어진 질문에 대한 답변을 문서에서 찾아 사용자에게 제공해주는 질의응답 작업 중 하나이다. 기존의 기계독해는 대부분 문서에 존재하는 짧고 간결한 답변 추출 문제를 풀고자 했으며 최근엔 불연속적인 범위를 추출하는 등의 확장된 문제를 다루는 데이터가 공개되었다. 불연속적인 답변 추출은 실제 애플리케이션에서 사용자에게 정보를 유연하게 제공해줄 수 있다. 따라서 본 논문에서는 기존의 간결한 단일 범위 추출에서 확장된 다중 범위 추출 시스템을 제안하고자 한다. 제안 모델은 문서를 구성하는 모든 토큰의 조합으로 구성된 Span Matrix를 통하여 다중 범위 추출 문제를 해결하고자 하며 실험을 통해 기존 연구들과 비교하여 가장 높은 86.8%의 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.