• 제목/요약/키워드: Reactor of disinfection

검색결과 36건 처리시간 0.025초

멀티 플라즈마 반응기를 이용한 E. coli 소독 (E. coli Disinfection Using a Multi Plasma Reactor)

  • 김동석;박영식
    • 한국환경보건학회지
    • /
    • 제39권2호
    • /
    • pp.187-195
    • /
    • 2013
  • Objectives: For the practical application of the dielectric barrier discharge plasma reactor, a plasma reactor able to manage large volumes of water is needed. This study investigated the possibility of the practical application of a multi-plasma reactor which is a scaled-up version of a single plasma reactor. Methods: The multi-plasma reactor consists of several high-voltage transformers and plasma modules (discharge, ground electrodes and quartz dielectric tubes). The effects of water characteristics such as voltage (30-120 V), air flow rate (1-5 l/min), number of high-voltage transformers and plasma modules, and water quality on Escherichia coli (E. coli) disinfection and decrease of COD and $UV_{254}$ absorbance were investigated. Results: The experimental results showed that at a voltage of over 80 V, most of the E. coli were disinfected within 90 seconds. E. coli inactivation was not affected by the air flow rate. E. coli disinfection in the multiplasma process showed the traditional log-linear form of the disinfection curve. E. coli inactivation performance by transformer 3-Reactor 5 and transformer 3-Reactor 3 were similar. The disinfection performance of the UV process was affected by artificial sewage water. However, the plasma process was less affected by the artificial sewage within the standards for effluent water quality. Conclusions: Disinfection performance with several low voltages and plasma modules of three to five in number applied to the plasma process was higher than that concentrating a small amount of high voltage through a single plasma reactor. Removal of COD, $UV_{254}$ absorbance, and E. coli disinfection with the plasma process were better than with the UV process.

여과-Plasma 공정을 이용한 Ralstonia Solanacearum 불활성화 (Inactivation of Ralstonia Solanacearum using Filtration-Plasma Process)

  • 김동석;박영식
    • 한국환경과학회지
    • /
    • 제23권6호
    • /
    • pp.1165-1173
    • /
    • 2014
  • For the field application of dielectric barrier discharge plasma reactor in nutrient solution culture, a filtration-DBD (dielectric barrier discharge) plasma reactor was investigated for the Ralstonia solanacearum which causes bacterial wilt in aquiculture. The filtration-DBD plasma reactor system of this study was consisted of filter, plasma reactor, reservoir. The DBD plasma reactor consisted of a quartz dielectric tube, discharge electrode (inner) and ground electrode (outer). The experimental results showed that the inactivation of R. solanacearum with filter media type in filter reactor ranked in the following order: anthracite > fiber ball > sand > ceramic ball > quartz ceramic. In filtration + plasma process, disinfection effect with the voltage was found to small. In disinfection time of 120 minutes, residual R. solanacearum concentration was 1.17 log (15 CFU/mL). When the continuous disinfection time was 120 minute, disinfection effect was thought to keep the four days. In sporadic operation mode of 30 minutes disinfection - 24 hours break, residual R. solanacearum concentration after five days was 0.3 log (2 CFU/mL). It is considered that most of R. solanacearum has been inactivated substantially.

자외선 소독기 성능 예측을 위한 CFD 해석 기법 연구 (A Study on CFD Methodology of the Performance Predictionfor the UV Disinfection Reactor)

  • 김현수;박정규;이경혁;조진수
    • 한국유체기계학회 논문집
    • /
    • 제17권6호
    • /
    • pp.44-51
    • /
    • 2014
  • The disinfection method using UV has emerged as photodissociation in water disinfection. In order to predict performance for UV disinfection, CFD analysis was performed due to saving cost. Most CFD studies of UV reactor have used particle tracking method. However it demands additional analysis time, computing resource and phase besides working fluid. In this paper, pathogenic microorganisms' route is assumed to streamline of fluid to save computing time. the computational results are in good agreement with experimental results. The results of streamline method are compared with the particle tracking method. In conclusion, the effectiveness of streamline method for UV disinfection are confirmed.

Photocatalytic Cell Disruption of Giardia lamblia in a $UV/TiO_2$ Immobilized Optical-Fiber Reactor

  • 유미진;김병우
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권6호
    • /
    • pp.1105-1113
    • /
    • 2004
  • Disinfection of a waterborne pathogenic protozoa, Giardia lamblia, by the conventional chlorine method has been known to be difficult. An alternative disinfection has been carried out by using a UV -light illuminating optical­fiber photoreactor. Light intensity diffused from one piece of a clad-removed optical-fiber was $1- 1.5{\mu}Em^{-2}s^{-1}$. Disinfection capability in a UV -light irradiated optical-fiber reactor suspended with 0.01 g $TiO_{2}\;dm^{-3}$ was 1.4 times that in the same reactor without $TiO_{2}$ photocatalysts. To resolve the absorption and scattering of UV light by the particles themselves as well as the difficulty of recycling particles in the slurry­type reactor, $TiO_{2}$ which was obtained by a hydrothermal method, was immobilized on clad-removed optical fibers. Such pretreatment of fiber surface resulted in an excellent transparency, which enhanced the UV light to diffuse laterally from a fiber surface. Coating time of the prepared solution by the hydrothermal method was not effective after more than two times. Disinfection capability in the $TiO_{2}$-immobilized optical-fiber reactor was $83\%$ in 1 h at $40^{\circ}C$, which was slightly higher than $76\%$ at $22^{\circ}C$ and $68\%$ at $10^{\circ}C$. Disinfection capability at $22^{\circ}C$ increased from $74\%$ at an initial pH of 3.4, through $76\%$ at pH 6.5, to $87\%$ at an initial pH of 10. Oxygen supply with air-flow rate of 5 $cm^3\;min^{-1}$ did not seem to increase the disinfection capability with UV /immobilized $TiO_2$.

은나노 활성탄을 이용한 Loop Reactor에서 하수 2차 처리수 중의 오염물질 제거 및 소독 효과 (The pollutants removal and disinfection of secondary effluent from sewage treatment plant in loop reactor using silver nanoparticles coated on activated carbon)

  • 선용호
    • 상하수도학회지
    • /
    • 제30권4호
    • /
    • pp.361-367
    • /
    • 2016
  • Pollutants removal and disinfection effect of secondary effluent from final settling tank of sewage treatment plant of W city were investigated in Loop Reactor using ordinary granular activated carbon(GAC) and GAC coated with silver nanoparticles. The results showed that the removal efficiency of $COD_{Mn}$, T-N and T-P using GAC with silver nanoparticles were higher than using the ordinary GAC. The removal efficiency of T-P using GAC with silver nanoparticles is 45.4% and that of T-P using ordinary GAC is 30.9% in the same case of the input amount of 20 g/L of GAC. The total califorms is reduced according to increasing input amount of GAC with silver nanoparticles and ordinary GAC. The disinfection efficiency of total coliforms in case of GAC with silver nanoparticles is much higher than that in case of ordinary GAC. For all experiments using the silver nanoparticles, the total coliforms is under 26 cfu/mL and this shows very excellent disinfection effect.

Disinfection of Wastewater by UV Irradiation: Influence of Hydrodynamics on the Performance of the Disinfection

  • Brahmi, Mounaouer;Hassen, Abdennaceur
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.243-252
    • /
    • 2011
  • Several mathematical relationships have been developed to describe bacterial responses to UV irradiation. Pseudomonas aeruginosa was taken as a bacterial model. The results obtained showed that the kinetics of disinfection is far to be as uniform. In fact, application of the model of Chick-Watson in its original form or modification, taking into account the speed change during the disinfection process, has not significantly improved results. The application of both models of Collins-Selleck and Hom constitute a major opportunity to simulate goodly the kinetics of UV disinfection. The results obtained showed that despite the major advantage held by applying the Hom model in this process of disinfection and for all strains studied, the model of Collins-Selleck gave the best results for the description of the UV inactivation process. The design of reactors, operating in continuous disinfection system, requires taking into account the hydrodynamic behaviour of water in the reactor. Knowing that a reduction of 4-log is necessary in the case of wastewater reuse for irrigation, a model integrating the expression of disinfection kinetics and the hydrodynamics through the UV irradiation room was proposed. The results highlight the interest to develop reactors in series working as four perfectly mixed reactors.

실내 미생물 입자 살균을 위한 광촉매 기술의 효율 (Effectiveness of Photocatalytic Techniques for Disinfection of Indoor Bioaerosols)

  • 신승호;김모근;조완근
    • 한국환경과학회지
    • /
    • 제16권7호
    • /
    • pp.785-791
    • /
    • 2007
  • The current study evaluated the technical feasibility of the application of titanium dioxide ($TiO_{2}$) photo-catalytic air cleaners for the disinfection of bioaerosols present in indoor air. The evaluation included both laboratory and field tests and the tests of hydraulic diameter (HD) and lamp type (LT). Disinfection efficiency of photocatalytic oxidation (PCO) technique was estimated by survival ratio of bacteria or fungi calculated from the number of viable cells which form colonies on the nutrient agar plates. It was suggested that the reactor coating with $TiO_{2}$ did not enhance the adsorption of bioaerosols, and that the UV irradiation has certain extent of disinfection efficiency. The disinfection efficiency increased as HD decreased, most likely due to the decrease in the light intensity since the distance of the catalyst from the light source increased when increasing the HD. It was further suggested that the mass transfer effects were not as important as the light intensity effects on the PCO disinfection efficiency of bioaerosols. Germicidal lamp was superior to the black lamp for the disinfection of airborne bacteria and fungi, which is supported by the finding that the disinfection efficiencies were higher when the germicidal lamp was used compared to the black lamp in the laboratory test. These findings, combined with operational attributes such as a low pressure drop across the reactor and ambient temperature operation, can make the PCO reactor a possible tool in the effort to improve indoor bioaerosol levels.

침지형 자외선 살균조 설계를 위한 자외선 분포 모델의 개발 및 적용 (Development of an UV Distribution Model for the Design of a Submerged UV Disinfection Reactor and Its Application)

  • 박창연;김성홍;최영균
    • 대한토목학회논문집
    • /
    • 제41권5호
    • /
    • pp.505-512
    • /
    • 2021
  • 침지형 자외선 살균조의 자외선 강도를 계산하기 위한 3차원 모델을 개발하였으며, 실제 하수처리장에 설치되어있는 개수로형 살균조와 관로형 살균조에 각각 적용하여 수치실험을 실시하였다. 모델링을 통해 계산한 살균조의 평균 자외선 강도는 각각 7.87 mW/cm2와 13.09 mW/cm2로 계산되었다. 자외선 조사 시간을 반영하고, 혼합 불균형, 램프 노화, 온도 및 파울링에 의한 감쇄효과를 고려한 자외선 조사량은 각각 21.1 mJ/cm2, 24.8 mJ/cm2로 예측되었는데 이 값은 목표 자외선 조사량인 20 mJ/cm2보다 각각 5 %, 24 % 높은 것으로 예측되었다. 개발한 UV3D 모델을 사용하면 살균조의 조사 시간이나 램프의 출력을 높이지 않고도 수치실험을 통해 평균 자외선 강도가 가장 큰 최적의 램프 위치를 찾을 수 있다. 램프 위치 조정만으로 본 연구에서 적용한 개수로형 살균조와 관로형 살균조의 자외선 조사량은 각각 0.9 %, 0.5 % 향상시킬 수 있다. 개수로형 살균조의 경우 살균조의 체적은 그대로 유지하면서 가로와 세로의 비율을 조정하고, 램프의 위치를 바꾸면 평균 자외선 강도는 현재보다 7.4 % 더 증가한다.

챔버 내측에 스프링형상을 갖는 유수형 자외선 살균장치 시뮬레이션 (Simulation for the Flowing Water Purification with Spring Shape Inside Chamber)

  • 정병균;정병호;이진종;정병수
    • 전기학회논문지P
    • /
    • 제59권4호
    • /
    • pp.411-416
    • /
    • 2010
  • Interest in application of ultraviolet light technology for primary disinfection of potable water in drinking water treatment plants has increased significantly in recent years. The efficacy of disinfection processes in water purification systems is governed by several key factors, including reactor hydraulics, disinfectant chemistry, and microbial inactivation kinetics. The objective of this work was to develop a computational fluid dynamics(CFD) model to predict velocity fields, mass transport, chlorine decay, and microbial inactivation in a continuous flow reactor. In this paper, It describe the how to design optimal UV disinfection device for ground water, BWT and rainwater. Spring shape instrument silver coated located in inner side of disinfection chamber. It make lead the active flowing movement target water and maximize disinfection performance. To search the optimal design method, it was performed computer simulation with 3D-CFD discrete ordinates model and manufactured prototype. Using proposed design method, performed simulation and proved satisfied performance.

자외선램프을 이용한 유수처리장치 설계 시뮬레이션 (Simulation Method for the Flowing Water Purification with UV Lamp)

  • 정병호;이강연
    • 조명전기설비학회논문지
    • /
    • 제23권9호
    • /
    • pp.17-23
    • /
    • 2009
  • 자외선 살균기술을 바탕으로 한 수처리 분야에 대한 관심이 최근 증가하고 있다. 수처리분야에서 살균처리방식의 효율은 유체 살균챔버나 살균강도 그리고 미생물의 불활성역학에 따라 수처리 성능이 결정된다. 광산화법에 이용되는 빛은 주로 자외선이 이용되며 매우 깨끗하고 높은 에너지를 가지고 있어 화학살균방법에 비해 잔류물이 없고 높은 안정성으로 최근 관심이 높아지고 있다. 그러나 자외선살균방식은 조사시간과 조사량에 직접적인 영향을 받아 이를 위한 최적의 설계가 이루어져야 한다. 본 연구에서는 유수살균장치의 챔버 내의 자외선 램프와 유수에 대한 3D-CFD discrete ordinates model 모델을 제시하고 이를 시뮬레이션을 통해 설계방식의 최적화 여부를 검증하고 향후 유수형 자외선살균방식의 시뮬레이션방법을 제안하고자 한다.