• Title/Summary/Keyword: Reactor kinetics

Search Result 287, Processing Time 0.024 seconds

Study on Preparation of Methyl N-Phenyl Carbamate by Oxidative Carbonylation of Aniline and Methanol (아닐린과 메탄올의 산화 카르보닐화에 의한 Methyl N-phenyl carbamate 제조 연구)

  • Roh, Jong-Seon;Lee, Kwan-Young;Kim, Tae-Soon;Chang, Tae-Seon;Yoon, Byung-Tae;Kim, Seong-Bo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.119-124
    • /
    • 2018
  • The production of methyl N-phenyl carbamate by an oxidative carbonylation method of aniline and methanol is of great interest as an environmentally friendly process that can replace the monomer production process of a polymer produce using conventional phosgene. In this study, heterogeneous catalysts were prepared by using Y-zeolite, $SiO_2$, $Al_2O_3$ as support, and oxidative carbonylation continuous operation from aniline and methanol was attempted using the prepared heterogeneous catalyst. Batch reactor was used to determine the support, and various reaction conditions such as reaction temperature, reaction pressure, and effect of promoter were established using palladium catalyst. A reaction kinetics study was conducted under optimum reaction conditions. The basic data for carbamate process development were obtained by performing continuous operation for a long time under established reaction condition.

High Temperature Application of Iron Removal Chemical Cleaning Solvent in the Secondary Side of Nuclear Steam Generators (증기발생기 2차측 제철화학세정액의 고온적용)

  • Hur, D.H.;Lee, E.H.;Chung, H.S.;Kim, U.C.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.140-148
    • /
    • 1994
  • A qualification test was performed for the iron removal chemical cleaning of the secondary side of nuclear steam generators at the selected temperature, 1$25^{\circ}C$, higher than the standard application temperature, 93$^{\circ}C$. The field cleaning condition for a nuclear unit was tested in a bench scale test loop including a SUS 316 stainless steel autoclave with one gallon capacity as a test vessel. The kinetics of sludge dissolution, corrosion of the secondary side materials and change of solvent chemistry were monitored. Test results indicated that more thorough cleaning was accomplished in less than half of the cleaning time required at 93$^{\circ}C$. And the total corrosions of the secondary side materials were found to be less than the values at 93$^{\circ}C$. While the solvent is recirculated and heated by an external chemical cleaning equipment for the conventional 93$^{\circ}C$ process, the secondary side is heated by the lateral heat of the primary coolant without the recirculation of the cleaning solution, and the solvent is mixed by vigorous boiling induced by periodic ventilation for the high temperature process. The requirement that the reactor coolant pumps should be running during the cleaning operation is the major disadvantage of the high temperature process which also should be considered when chemical cleaning is planned for steam generators under operation.

  • PDF

Characteristics of Growth and Oil Production of Peppermint Cells in an Air-bubble Bioreactor (기포 생물반응기에서 페퍼민트 세포의 생육 및 정유 생산 특성)

  • 송은범;이형주
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.495-503
    • /
    • 1993
  • To investigate the characteristics of growth and oil production of peppermint cells during a batch culture, cells derived from peppermint callus was cultivated in an air bubble reactor. During the batch culture, effects of inoculum size, abiotic stress, yeast elicitor, and two stage culture on the cell growth, the productivity of oleolesin, and the formation of flavor components were determined and also the sugar concentrations and kinetics of cell growth were analyzed. Among the various sizes of inoculum, the culture with 2.0% packed cell volume inoculum showed the optimum condition for cell growth in the proposed bioreactor, and the cell yield and essential oil production reached to 5.7g/1 and 0.109g/1, respectively. When the abiotic stress of daily 8hr dark and $10^{\circ}C$ cold treatments were given to the culture cell growth decreased but essential oil production increased to 0.546g/l. In a modified Lin-Staba medium in which 100mg/l yeast extract as an elicitor was added to the culture, the cell growth and oil production increased, and menthol content was 22.5% of oil. In the two stage culture, in which the basic culture conditions of 27$^{\circ}C$, light, and without elicitor were employed during the first six days followed by the second stage with daily 8hr treatment of cold and dark condition, and also with yeast extract as an elicitor, cell growth decreased after eight days, essential oil production was not increased, and menthol was not detected. Dry cell yield was 0.38g dry cell/g sugar and specific growth rate was 0.25 day-1. The major terpenoid in the oil was not the menthol but pulegone and piperitone, precursors of menthol were accumulated. However, when yeast elicitor was added, menthol was produced to the level of 22.5% which was the highest value in the peppermint cell culture reported so far.

  • PDF

Analysis of the Factors Affecting Anaerobic Thermophilic Digestibility of Food Wastes (음식물쓰레기의 고온 혐기성 소화도에 미치는 요소에 대한 분석)

  • Kim, Do Hee;Hyun, Seung Hoon;Kim, Kyung Woong;Cho, Jaeweon;Kim, In S.
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.8 no.2
    • /
    • pp.130-139
    • /
    • 2000
  • Serial basic tests were conducted for the determination of fundamental kinetics and for the actual application of kinetic parameter to food waste digestion with precise measurement of methane production under a thermophilic condition. The effects of food particle size, sodium ion concentration, and volatile solid (VS) loading rate on the anaerobic thermophilic food waste digestion process were investigated. Results of serial test for the determination of fundamental kinetic coefficients showed the value of k (maximum substrate utilization rate coefficient) and KS (half-saturation coefficient) as $0.24hr^{-1}$ and $700mg/{\ell}$, respectively, for non-inhibiting organic loading range. No inhibition effect was shown until $5g/{\ell}$ of sodium ion concentration was applied to a serum bottle reactor. However, the volume of methane gas was decreased gradually when the concentrations of more than $5g/{\ell}$ of sodium ion applied. All sizes of food waste particle showed the same constants (A : 0.45) but the maximum substrate utilization rate constant ($k_{HA}$) was inversely proportional to particle size. As an average particle size increased from 1.02 mm to 2.14 mm, $k_{HA}$ decreased from $0.0033hr^{-1}$ to $0.0015hr^{-1}$. The result reveals that particle size is one of the most important factors in anaerobic food waste digestion. There was no inhibition effect of sodium ion when VS loading rate was $30g/{\ell}$. And maximum injection concentration of VS loading rate was determined about $40g/{\ell}$.

  • PDF

A Comparative Study on the Removals of 1-Naphthol by Natural Manganese Oxides and Birnessite (천연망간산화물과 버네사이트에 의한 1-Naphthol의 제거 특성 비교)

  • Lee, Doo-Hee;Harn, Yoon-I;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.278-286
    • /
    • 2009
  • In this study, four natural Mn oxides ($NMO_1-NMO_4$) was characterized using x-ray diffraction, scanning electron microscopy, and their removal efficiency for 1-naphthol (1-NP) in aqueous phase, using batch reactor, was investigated. The results were compared with one another and a synthetic manganese oxide, birnessite. The NMOs have a various Mn minerals including pyrolusite (${\beta}-MnO_2$), cryptomeltane (${\alpha}-MnO_2$) as well as birnessite (${\delta}-MnO_2$) depending on their sources, which results in different removal efficiencies (removals, kinetics) and reaction types (sorption or oxidative-transformation). The comparative study showed that $NMO_1$ (electrolytic Mn oxide) have a higher removal efficiency for 1-NP via oxidative-transformation compared to birnessite. The 1-NP removals by NMOs were followed by pseudo-first order reaction, and the surface area-normalized specific rate constants ($K_{surf},\;L/m^2$ min) determined were in order of $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$. From the solvent extraction experiments with the Mn oxide precipitates after reaction, it was observed that the oxidative-transformation rates of 1-NP were in order of $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$ and the analysis of HPLC chromatogram and UV-Vis. absorption ratios ($A_{2/4}$, $A_{2/6}$) on the supernatant confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Results from this study proved that natural Mn oxide (except $NMO_2$) used in this experiment can be effectively applied for the removal of naphthols in aqueous phase, and the removal efficiencies are depending on the surface characters of the Mn oxides.

Characteristics of Biodegradation of Geosmin using BAC Attached Bacteria in Batch Bioreactor (정수처리용 생물활성탄(BAC) 부착 박테리아를 이용한 회분식 반응기에서의 Geosmin 생분해 특성)

  • Son, Hee-Jong;Jung, Chul-Woo;Choi, Young-Ik;Jang, Seong-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.7
    • /
    • pp.699-705
    • /
    • 2010
  • In this study, three different biological activated carbons (BACs) were prepared from activated carbons made of each coal (F400, Calgon), coconut (Samchully) and wood(Pica, Picabiol) which were run for two and half years in the pilot plant. The attached bio-film microorganisms in and on the BACs were isolated and identified. The results showed that nine different bacteria species (Chryseomonas luteola, Stenotrophomonas maltophilia, Pseudomonas vesicularis, Aeromonas hydrophila, Spingomonas paucimobilis, Agrobacterium radiobacter, Pseudomonas fluorescens, Spirillum spp., and Pasteurella haemolytica) were isolated and identified, the dominant species was Pseudomonas sp. that had occupied 56.5%. More specifically, it was observed that the populations of the microorganisms deceased in the order: Pasteurella haemolytica (18.9%) > Chryseomonas luteola (4.0%) > Agrobacterium radiobacter (3.5%) > Aeromonas hydrophila (2.0%) in and on the BACs. After isolating of 9 species of biofilm microorganisms, the growth curve for the biomass was investigated. During 24~96 hours, the biomass has the highest concentration, and activity of the biomass was the best to uptake geosmin as carbon resources. The operation temperatures for investigating the biodegradation of geosmin were set at $4^{\circ}C$ and $25^{\circ}C$. Pseudomonas vesicularis, Pseudomonas fluorescens, Agrobacterium radiobacter and Stenotrophomonas maltophilia played a maior role in removing the target compound as geosmin. However, geosmin was not biodegraded well by Chryseomonas luteola, Spingomonas paucimobilis, and Spirillum spp.. It is also interesting to evaluate kinetics of biodegradability of geosmin. The first-order rate constants for biodegradability of geosmin at $4^{\circ}C$ and $25^{\circ}C$ were $0.00006{\sim}0.0002\;hr^{-1}$ and $0.0043{\sim}0.0046\;hr^{-1}$ respectively. Higher water temperature produced better geosmin removal rates. When concentrations of geosmin increased from 10 to 10,000 ng/L, the rate constants for biodegradability of geosmin increased from 0.0003 to $0.0882\;hr^{-1}$. As described earlier, higher geosmin concentration in the reactor produced higher rate constant.

Application of Reused Powdered Waste Containing Aluminum Oxide on the Treatment of Cr(VI) (6가 크롬 처리를 위한 알루미늄 산화물을 함유한 재생 분말 폐기물의 적용)

  • Lim, Jae-Woo;Kim, Tae-Hwan;Kang, Hyung-Sik;Kim, Do-Son;Kim, Han-Seon;Cho, Seok-Hee;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.3
    • /
    • pp.179-185
    • /
    • 2009
  • In this research, the removal capacity of Cr(VI) by the reused powdered wastes (RPW) containing aluminium oxides was studied. As a pre-treatment process for the preparation of calcined wastes, calcination was conducted at $550^{\circ}C$ to remove organic fraction in the raw wastes. In order to study the adsorption trend of Cr(VI) ions from aqueous solutions, the pH-edge adsorption, adsorption kinetic and adsorption isotherm were investigated using a batch reactor in the presence of four different background electrolytes($NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-},\;PO_4\;^{3-}$). Cr(VI) adsorption was greatly reduced in the presence of $SO_4\;^{2-}$ and $PO_4\;^{3-}$ over the entire pH range. Meanwhile the inhibition effect by $NO_3\;^-$ and $CO_3\;^{2-}$ was relatively lower than that by $SO_4\;^{2-}$ and $PO_4\;^{3-}$. Cr(VI) adsorption was maximum around pH 4.5 in the presence of $NO_3\;^-$ and $CO_3\;^{2-}$. As the concentration of background electrolytes increased, Cr(VI) adsorption decreased. This result mightly suggests that adsorption between the surface of RPW and Cr(VI) occurs through outer-sphere complex. Cr(VI) adsorption onto the RPW was well described by second-order kinetics. From the Langmuir isotherm at initial pH 3, the maximum adsorbed amount of Cr(VI) onto the RPW was 11.1, 10, 3.3, 5 mg/g in the presence of $NO_3\;^-,\;CO_3\;^{2-},\;SO_4\;^{2-}$, and $PO_4\;^{3-}$, respectively.