• Title/Summary/Keyword: Reactor Safety System

Search Result 561, Processing Time 0.026 seconds

DESIGN OF LSDS FOR ISOTOPIC FISSILE ASSAY IN SPENT FUEL

  • Lee, Yongdeok;Park, Chang Je;Kim, Ho-Dong;Song, Kee Chan
    • Nuclear Engineering and Technology
    • /
    • v.45 no.7
    • /
    • pp.921-928
    • /
    • 2013
  • A future nuclear energy system is being developed at Korea Atomic Energy Research Institute (KAERI), the system involves a Sodium Fast Reactor (SFR) linked with the pyro-process. The pyro-process produces a source material to fabricate a SFR fuel rod. Therefore, an isotopic fissile content assay is very important for fuel rod safety and SFR economics. A new technology for an analysis of isotopic fissile content has been proposed using a lead slowing down spectrometer (LSDS). The new technology has several features for a fissile analysis from spent fuel: direct isotopic fissile assay, no background interference, and no requirement from burnup history information. Several calculations were done on the designed spectrometer geometry: detection sensitivity, neutron energy spectrum analysis, neutron fission characteristics, self shielding analysis, and neutron production mechanism. The spectrum was well organized even at low neutron energy and the threshold fission chamber was a proper choice to get prompt fast fission neutrons. The characteristic fission signature was obtained in slowing down neutron energy from each fissile isotope. Another application of LSDS is for an optimum design of the spent fuel storage, maximization of the burnup credit and provision of the burnup code correction factor. Additionally, an isotopic fissile content assay will contribute to an increase in transparency and credibility for the utilization of spent fuel nuclear material, as internationally demanded.

An Application of Realistic Evaluation Model to the Large Break LOCA Analysis of Ulchin 3&4

  • C. H. Ban;B. D. Chung;Lee, K. M.;J. H. Jeong;S. T. Hwang
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.429-434
    • /
    • 1996
  • K-REM[1], which is under development as a realistic evaluation model of large break LOCA, is applied to the analysis of cold leg guillotine break of Ulchin 3&4. Fuel parameters on which statistical analysis of their effects on the peak cladding temperature (PCT) are made and system parameters on which the concept of limiting value approach (LVA) are applied, are determined from the single parameter sensitivity study. 3 parameters of fuel gap conductance, fuel thermal conductivity and power peaking factor are selected as fuel related ones and 4 parameters of axial power shape, reactor power, decay heat and the gas pressure of safety injection tank (SIT) are selected as plant system related ones. Response surface of PCT is generated from the plant calculation results and on which Monte Carlo sampling is made to get plant application uncertainty which is statistically combined with code uncertainty to produce the 95th percentile PCT. From the break spectrum analysis, blowdown PCT of 1350.23 K and reflood PCT of 1195.56 K are obtained for break discharge coefficients of 0.8 and 0.5, respectively.

  • PDF

Preliminary Leak-before Break Assessment of Intermediate Heat Transport System Hot-Leg of a Prototype Generation IV Sodium-cooled Fast Reactor (소듐냉각고속로 원형로 중간열전달계통 고온배관의 파단전누설 예비평가)

  • Lee, Sa Yong;Kim, Nak Hyun;Koo, Gyeong Hoi;Kim, Sung Kyun;Kim, Yoon Jea
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.12 no.1
    • /
    • pp.126-133
    • /
    • 2016
  • Recently, the research and development of Sodium-cooled Fast Reactors (SFRs) have made progresses. However, liquid sodium, the coolant of an SFR, is chemically unstable and sodium fire can be occurred when liquid sodium leaks from sodium pipe. To reduce the damage by the sodium fire, many fire walls and fire extinguishers are needed for SFRs. LBB concept in SFR might reduce the scale of sodium fire and decrease or eliminate fire walls and fire extinguishers. Therefore, LBB concept can contribute to improve economic efficiency and to strengthen defense-in depth safety. The LBB assessment procedure has been well established, and has been used significantly in light water reactors (LWRs). However, an LBB assessment of an SFR is more complicated because SFRs are operated in elevated temperature regions. In such a region, because creep damage may occur in a material, thereby growing defects, an LBB assessment of an SFR should consider elevated temperature effects. The procedure and method for this purpose are provided in RCC-MRx A16, which is a French code. In this study, LBB assessment was performed for PGSFR IHTS hot-leg pipe according to RCC-MRx A16 and the applicability of the code was discussed.

Numerical Study on Auto-ignition and Combustion Emissions Using Gasoline/Ethanol Surrogates (휘발유/에탄올 혼합연료의 자연발화 및 연소배기가스 특성에 관한 수치적 연구)

  • Lee, Eui Ju
    • Fire Science and Engineering
    • /
    • v.30 no.3
    • /
    • pp.1-6
    • /
    • 2016
  • More than five thousands transportation fires occurannually in Korea and the resulting destruction of property and loss of life is huge and results in traffic and environmental pollution. The recent development of automobile technology such as the hybrid concept and use of bio fuels makes fire protection even more difficult due to a lack of understanding of the new adapted system including vehicle engines. In this study, a numerical simulation was performed on a PSR (perfectly Stirred Reactor) to simulate an automobile engine and to clarify the effect of gasoline/ethanol surrogates as a fuel. The temperature, NOx and soot emissions were predicted to decrease with increasing ethanol content, but that of unburned hydrocarbons was found to increase dramatically. The result will provide not only the basic thermal characteristics for engines and their after-treatment systems, but also make it possible to assess the potential for fire events in these systems when an ethanol mixed fuel is used in gasoline vehicles.

Development of Micro Tensile Test of CVD-SiC coating Layer for TRISO Nuclear Fuel Particles at elevated temperature

  • Lee, Hyun-Min;Park, Kwi-Il;Kim, Do-Kyung
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.95.1-95.1
    • /
    • 2012
  • Very High Temperature gas cooler Reactor (VHTR) has been considered as one of the most promising nuclear reactor because of many advantages including high inherent safety to avoid environmental pollution, high thermal efficiency and the role of secondary energy source. The TRISO coated fuel particles used in VHTR are composed of 4 layers as OPyC, SiC, IPyC and buffer PyC. The significance of CVD-SiC coatings used in tri-isotropic(TRISO) nuclear coated fuel particles is to maintain the strength of the whole particle. Various methods have been proposed to evaluate the mechanical properties of CVD-SiC film at room temperature. However, few works have been attempted to characterize properties of CVD-SiC film at high temperature. In this study, micro tensile system was newly developed for mechanical characterization of SiC thin film at elevated temperature. Two kinds of CVD-SiC films were prepared for micro tensile test. SiC-A had [111]-preferred orientation, while SiC-B had [220]-preferred orientation. The free silicon was co-deposited in SiC-B coating layer. The fracture strength of two different CVD-SiC films was characterized up to $1000^{\circ}C$.The strength of SiC-B film decreased with temperature. This result can be explained by free silicon, observed in SiC-B along the columnar boundaries by TEM. The presence of free silicon causes strength degradation. Also, larger Weibull-modulus was measured. The new method can be used for thin film material at high temperature.

  • PDF

Determination of Glucose in Whole Blood by Chemiluminescence Method (화학발광법에 의한 전혈 중의 당 정량)

  • Lee, Sang Hak;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.3
    • /
    • pp.223-229
    • /
    • 2001
  • A method for the determination of glucose in human whole blood by chemiluminescence method using a stopped flow injection system has been studied. The method is based on the differences in the chemiluminescence intensities of luminol due to the different amounts of hydrogen peroxide produced from the glucose oxidase catalyzed reaction. The enzyme reactor was prepared by immobilization of glucose oxidase on aminopropyl glass beads and the chemiluminescence from a flow cell was measured by means of an optical fiber bundle. In order to obtain the optimum experimental conditions, effects of pH for the chemiluminogenic solution and enzyme reactor, flow rate and temperature on the chemiluminescence intensity were investigated. The calibration curve obtained under optimum experimental conditions was linear over the range from $1.0{\times}10^{-1}$ mM to 7.0 mM and the detection limit was $6.0{\times}10^{-2}$ mM. The proposed method was applied to the determination of glucose in whole human blood sample and the results were compared with those obtained by an official method. The present method was also evaluated by the results of recovery experiments.

  • PDF

Eigen-Frequency of a Cantilever Beam Restrained with Added Mass and Spring at Free End or a Node Point (자유단 혹은 노드점에 작용하는 스프링과 부가질량을 받는 일단 지지보의 고유진동수)

  • Sim, Woo-Gun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.12
    • /
    • pp.32-40
    • /
    • 2018
  • In order to avoid excessive vibration, it is required to carry out a vibration analysis of heat-exchanger/nuclear-reactor at the design stage. Information of eigen-frequency in the vibration problem is required to evaluate safety of heat-exchange/nuclear reactor. This paper describes a numerical method, Galerkin's method, to solve the eigenvalue problem occurred in a cantilever beam. The beam is restrained with added mass and spring at the free end or a node point of a mode shape. The numerical results of eigen-frequency were compared with simple analytical and experimental results given by simple approach and simple test, respectively. It is found that Galerkin's method is applicable to estimate the eigen-frequency of the cantilever beam. The frequencies become lower with increasing the added mass and the frequencies increase with the spring force. It is shown the heavy added mass has a role of support on the flexible tube. The eigen-frequency of the first mode, for the system with the added mass mounted at the free end, can be calculated by the approximate analytical method existing with more or less accuracy.

Quantification of Reactor Safety Margins for Large Break LOCA with Application of Realistic Evaluation Methodology (최적평가 방법론의 적용에 의한 대형냉각재 상실사고시의 원자로 안전여유도의 정량화)

  • B.D. Chung;Lee, Y.J.;T.S. Hwang;Lee, W.J.;Lee, S.Y.
    • Nuclear Engineering and Technology
    • /
    • v.26 no.3
    • /
    • pp.355-366
    • /
    • 1994
  • The USNRC issued a revised ECCS rule that allows the use of best estimate computer codes for safety analysis. The rule also requires an estimation of uncertainty in calculated system response when applying the best estimate computer codes. A practical realistic evaluation methodology to evaluate the ECCS performance that satisfies the requirements of the ECCS rule has been developed and this paper describes the application of new realistic evaluation methodology to large break LOCA for, the demonstration of the new methodology. The computer code RELAP5/MOD3/KAERI, which was improved from RELAP5/MOD3.1, was used as the best estimate code in the application. The uncertainty of the code was evaluated by assessing several separate and integral effect tests, and for the application to actual plant Kori 3 & 4 was selected as the reference plant. Response surfaces for blowdown and reflood PCTs were generated from the results of the sensitivity analyses and probability distribution functions were established by random sampling or Monte-Carlo method for each response surface. Final uncertainties were quantified at 95% probability level and safety margins for large break LOCA were discussed.

  • PDF

Applicability of nonlinear ultrasonic technique to evaluation of thermally aged CF8M cast stainless steel

  • Kim, Jongbeom;Kim, Jin-Gyum;Kong, Byeongseo;Kim, Kyung-Mo;Jang, Changheui;Kang, Sung-Sik;Jhang, Kyung-Young
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.621-625
    • /
    • 2020
  • Cast austenitic stainless steel (CASS) is used for fabricating different components of the primary reactor coolant system of pressurized water reactors. However, the thermal embrittlement of CASS resulting from long-term operation causes structural safety problems. Ultrasonic testing for flaw detection has been used to assess the thermal embrittlement of CASS; however, the high scattering and attenuation of the ultrasonic wave propagating through CASS make it difficult to accurately quantify the flaw size. In this paper, we present a different approach for evaluating the thermal embrittlement of CASS by assessing changes in the material properties of CASS using a nonlinear ultrasonic technique, which is a potential nondestructive method. For the evaluation, we prepared CF8M specimens that were thermally aged under four different heating conditions. Nonlinear ultrasonic measurements were performed using a contact piezoelectric method to obtain the relative ultrasonic nonlinearity parameter, and a mini-sized tensile test was performed to investigate the correlation of the parameter with material properties. Experimental results showed that the ultrasonic nonlinearity parameter had a correlation with tensile properties such as the tensile strength and elongation. Consequently, we could confirm the applicability of the nonlinear ultrasonic technique to the evaluation of the thermal embrittlement of CASS.

NATURAL CIRCULATION ANALYSIS CONSIDERING VARIABLE FLUID PROPERTIES WITH THE CUPID CODE (CUPID 코드의 유체 물성치 변화를 고려한 자연대류 해석)

  • Lee, S.J.;Park, I.K.;Yoon, H.Y.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2015
  • Without electirc power to cool down the hot reactor core, passive systems utilizing natural circulation are becoming a big specialty of recent neculear systems after the severe accident in Fukusima. When we consider the natural circulation in a pool, thermal mixing phenomena may start from single phase circulation and can continue to two phase condition. Since the CUPID code, which has been developed for two-phase flow analysis, can deal with the phase transition phenomena, the CUPID would be pertinent to natural convection problems in single- and two-phase conditions. Thus, the CUPID should be validated against single- and two-phase natural circulation phenomena. For the first step of the validation process, this study is focused on the validation of single-phase natural circulation. Moreover, the CUPID code solves the fluid properties by the relationship to pressure and temperature from the steam table considering non-condensable gas effects, so that the effects from variable properties are included. Simple square thermal cavity problems are tested for laminar and turbulent conditions against numerical and experimental data. Throughout the investigation, it is found that the variable properties can affect the flow field in laminar condition, but the effect becomes weak in turbulence condition, and the CUPID code implementing steam table is capable of analyzing single phase natural circualtion phenomena.