• Title/Summary/Keyword: Reactor Safety System

Search Result 573, Processing Time 0.029 seconds

FROM THE DIRECT NUMERICAL SIMULATION TO SYSTEM CODES - PERSPECTIVE FOR THE MULTI-SCALE ANALYSIS OF LWR THERMALHYDRAULICS

  • Bestion, D.
    • Nuclear Engineering and Technology
    • /
    • v.42 no.6
    • /
    • pp.608-619
    • /
    • 2010
  • A multi-scale analysis of water-cooled reactor thermalhydraulics can be used to take advantage of increased computer power and improved simulation tools, including Direct Numerical Simulation (DNS), Computational Fluid Dynamics (CFD) (in both open and porous mediums), and system thermalhydraulic codes. This paper presents a general strategy for this procedure for various thermalhydraulic scales. A short state of the art is given for each scale, and the role of the scale in the overall multi-scale analysis process is defined. System thermalhydraulic codes will remain a privileged tool for many investigations related to safety. CFD in porous medium is already being frequently used for core thermalhydraulics, either in 3D modules of system codes or in component codes. CFD in open medium allows zooming on some reactor components in specific situations, and may be coupled to the system and component scales. Various modeling approaches exist in the domain from DNS to CFD which may be used to improve the understanding of flow processes, and as a basis for developing more physically based models for macroscopic tools. A few examples are given to illustrate the multi-scale approach. Perspectives for the future are drawn from the present state of the art and directions for future research and development are given.

A Study on the Improvement and Application Plans of Korean Nuclear Safety Regulations for their Application on Nuclear powered ships (원자력 선박 적용을 위한 국내 원자력 안전규제 개선 및 적용방안에 관한 고찰)

  • Jaehyun Kim;Junseop Jang;Seungmin Kwon;Sinhyeong Kim
    • Journal of Radiation Industry
    • /
    • v.18 no.2
    • /
    • pp.109-115
    • /
    • 2024
  • As a global effort for eco-friendly, the ship building is making great efforts to develop ships using low-carbon, eco-friendly alternative fuels. Nuclear energy, one of several eco-friendly alternative energy sources, is evaluated as an effective alternative for future ships by minimizing carbon emissions and securing economic feasibility with low power generation cost. However, although appropriate regulatory requirements are necessary for commercialization of nuclear powered ships, there are currently no regulatory requirements for nuclear powered ships in Korea. In this study, accordingly, domestic and international regulatory requirements related to nuclear powered ships were reviewed, matters to be considered in terms of safety when developing domestic marine nuclear reactor regulatory requirements were derived, and a licensing regulatory system for nuclear powered ships was derived.This study is expected to be used as basic reference data when developing regulatory requirements for nuclear powered ships.

Development of the vapor film thickness correlation in porous corrosion deposits on the cladding in PWR

  • Yuan Shen;Zhengang Duan;Chuan Lu ;Li Ji ;Caishan Jiao ;Hongguo Hou ;Nan Chao;Meng Zhang;Yu Zhou;Yang Gao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4798-4808
    • /
    • 2022
  • The porous corrosion deposits (known as CRUD) adhered to the cladding have an important effect on the heat transfer from fuel rods to coolant in PWRs. The vapor film is the main constituent in the two-phase film boiling model. This paper presents a vapor film thickness correlation, associated with CRUD porosity, CRUD chimney density, CRUD particle size, CRUD thickness and heat flux. The dependences of the vapor film thickness on the various influential factors can be intuitively reflected from this vapor film thickness correlation. The temperature, pressure, and boric acid concentration distributions in CRUD can be well predicted using the two-phase film boiling model coupled with the vapor film thickness correlation. It suggests that the vapor thickness correlation can estimate the vapor film thickness more conveniently than the previously reported vapor thickness calculation methods.

FAULT TREE ANALYSIS OF KNICS RPS SOFTWARE

  • Park, Gee-Yong;Koh, Kwang-Yong;Jee, Eunk-Young;Seong, Poong-Hyun;Kwon, Kee-Choon;Lee, Dae-Hyung
    • Nuclear Engineering and Technology
    • /
    • v.40 no.5
    • /
    • pp.397-408
    • /
    • 2008
  • This paper describes the application of a software fault tree analysis (FTA) as one of the analysis techniques for a software safety analysis (SSA) at the design phase and its analysis results for the safety-critical software of a digital reactor protection system, which is called the KNICS RPS, being developed in the KNICS (Korea Nuclear Instrumentation & Control Systems) project. The software modules in the design description were represented by function blocks (FBs), and the software FTA was performed based on the well-defined fault tree templates for the FBs. The SSA, which is part of the verification and validation (V&V) activities, was activated at each phase of the software lifecycle for the KNICS RPS. At the design phase, the software HAZOP (Hazard and Operability) and the software FTA were employed in the SSA in such a way that the software HAZOP was performed first and then the software FTA was applied. The software FTA was applied to some critical modules selected from the software HAZOP analysis.

Preliminary Design of the Supercritical $CO_2$ Brayton Cycle Energy Conversion System (초임계 이산화탄소 Brayton 에너지 전환계통 예비설계)

  • Cha, Jae-Eun;Eoh, Jae-Hyuk;Lee, Tae-Ho;Sung, Sung-Hwan;Kim, Tae-Woo;Kim, Seong-O;Kim, Dong-Eok;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3181-3188
    • /
    • 2008
  • The supercritical $CO_2$ Brayton cycle energy conversion system is presented as a promising alternative to the present Rankine cycle. The principal advantage of the S-$CO_2$ gas is a good efficiency at a modest temperature and a compact size of its components. The S-$CO_2$ Brayton cycle coupled to a SFR also excludes the possibilities of a SWR (Sodium-Water Reaction) which is a major safety-related event, so that the safety of a SFR can be improved. KAERI is conducting a feasibility study for the supercritical carbon dioxide (S-$CO_2$) Brayton cycle power conversion system coupled to KALIMER(Korea Advanced LIquid MEtal Reactor). The purpose of this research is to develop S-$CO_2$ Brayton cycle energy conversion systems and evaluate their performance when they are coupled to advanced nuclear reactor concepts of the type under investigation in the Generation IV Nuclear Energy Systems. This paper contains the research overview of the S-$CO_2$ Brayton cycle coupled to KALIMER-600 as an alternative energy conversion system.

  • PDF

Comparative study of constitutive relations implemented in RELAP5 and TRACE - Part II: Wall boiling heat transfer

  • Shin, Sung Gil;Lee, Jeong Ik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1860-1873
    • /
    • 2022
  • Nuclear thermal-hydraulic system analysis codes have been developed to comprehensively model nuclear reactor systems to evaluate the safety of a nuclear reactor system. For analyzing complex systems with finite computational resources, system codes usually solve simplified fluid equations for coarsely discretized control volumes with one-dimensional assumptions and replace source terms in the governing equations with constitutive relations. Wall boiling heat transfer models are regarded as essential models in nuclear safety evaluation among many constitutive relations. The wall boiling heat transfer models of two widely used nuclear system codes, RELAP5 and TRACE, are analyzed in this study. It is first described how wall heat transfer models are composed in the two codes. By utilizing the same method described in Part 1 paper, heat fluxes from the two codes are compared under the same thermal-hydraulic conditions. The significant factors for the differences are identified as well as at which conditions the non-negligible difference occurs. Steady-state simulations with both codes are also conducted to confirm how the difference in wall heat transfer models impacts the simulation results.

Fault Tolerant Design of Universal Soft Controller for Advanced Power Reactor (신형원전(APR+)을 위한 범용소프트제어기의 내고장성 설계)

  • Ye, Song-Hae;Lyou, Joon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.49 no.9
    • /
    • pp.279-286
    • /
    • 2012
  • Recently, design of Universal Soft Controller(USC) has been applied to the advanced control room for nuclear power plant. USC is software-based manual control means to control safety components as well as non-safety components in the highly-integrated control room. Therefore, design feature of USC is essential for the implementation of a single workstation in the advanced control room. The traditional control room is replaced by computer-driven consolidated operator interfaces. Considering our design has further reduced the probability of USC spurious signals by requiring two distinct operator control actions to generate any control signal. The reality of USC does not increase the probability of reactor trip because the probability of spurious USC signal is negligible. Universal Soft Control represents a significant evolution in nuclear I&C/HSI System. USC integrates the indicators and controls from multiple divisions into a single integrated visual display unit(VDU) based HSI(Human System Interface). In order to prevent adverse influence on safety function performance from USC failure, ESFAS signals are applied to safety components or functions. In addition, safety manual switches have priority over USC's signals. Therefore, spurious USC signals can be momentarily blocked by selecting a soft control command from the safety VDU.

A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION -A FEASIBILITY CASE STUDY IN JAPAN

  • Kubo, Tetsuo;Yamamoto, Tomofumi;Sato, Kunihiko;Jimbo, Masakazu;Imaoka, Tetsuo;Umeki, Yoshito
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.581-594
    • /
    • 2014
  • A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.

Thermal Hazards of Polystyrene Polymerization Process by Bulk Polymerization (벌크 중합법에 의한 폴리스티렌 중합공정의 열적위험성)

  • Han, In-Soo;Lee, Jung-Suk;Lee, Keun-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.4
    • /
    • pp.1-8
    • /
    • 2013
  • The aim of this study is to assess thermal hazards of polystyrene polymerization process by bulk polymerization with accelerating rate calorimeter(ARC) and Multimax reactor system(MM). From this study, we found out that the polymerization process should be operated at reaction temperature of $120^{\circ}C{\sim}130^{\circ}C$. At reaction temperature over $130^{\circ}C$, there was a runaway reaction hazard due to the temperature control failure following a viscosity increase of reaction products. With a cooling failure of a reactor in the early stage of process operation at the reaction temperature ($120^{\circ}C{\sim}130^{\circ}C$), there was a high thermal hazard of burst of a reactor's rupture disk or explosion of a reactor caused by the rapid rise of temperature and pressure to $340^{\circ}C$, 5.3 bar respectively within 30 - 50 minutes.