• 제목/요약/키워드: Reactivity Controller

검색결과 13건 처리시간 0.01초

EVALUATION OF THE APPLICABLE REACTIVITY RANGE OF A REACTIVITY COMPUTER FOR A CANDU-6 REACTOR

  • Lee, Eun Ki;Park, Dong Hwan;Lee, Whan Soo
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.183-194
    • /
    • 2014
  • Recently, a CANDU digital reactivity computer system (CDRCS) to measure the worth of the liquid zone controller in a CANDU-6 was developed and successfully applied to a physics test of refurbished Wolsong Unit 1. In advance of using the CDRCS, its measureable reactivity range should be investigated and confirmed. There are two reasons for this investigation. First, the CANDU-6 has a larger reactor and smaller excore detectors than a general PWR and consequently the measured reactivity is likely to reflect the peripheral power variation only, not the whole core. The second reason is photo neutrons generated from the interaction of the moderator and gamma-rays, which are never considered in a PWR. To evaluate the limitations of the CDRCS, several tens of three-dimensional steady and transient simulations were performed. The simulated detector signals were used to obtain the dynamic reactivity. The difference between the dynamic reactivity and the static worth increases in line with the water level changes. The maximum allowable reactivity was determined to be 1.4 mk in the case of CANDU-6 by confining the difference to less than 1%.

Safety margin and fuel cycle period enhancements of VVER-1000 nuclear reactor using water/silver nanofluid

  • Saadati, Hassan;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • 제50권5호
    • /
    • pp.639-647
    • /
    • 2018
  • In this study, the effects of selecting water/silver nanofluid as both a coolant and a reactivity controller during the first operating cycle of a light water nuclear reactor are investigated. To achieve this, coupled neutronic-thermo-hydraulic analysis is employed to simulate the reactor core. A detailed VVER1000/446 reactor core is modeled in monte carlo code (MCNP), and the model is verified using the porous media approach. Results show that the maximum required level of silver nanoparticles is 1.3 Vol.% at the beginning of the cycle; this value drops to zero at the end of cycle. Due to substitution of water/boric acid with water/Ag nanofluid, reactor operation time at maximum power extends to 357.3 days, and the energy generation increases by about 27.3%. The higher negative coolant temperature coefficient of reactivity in the presence of nanofluid in comparison with the water/boric acid indicates that the reactor is inherently safer. Considering the safety margins in the presence of the nanofluid, minimum departure from nucleate boiling ratio is calculated to be 2.16 (recommendation is 1.75).

Uncertainty quantification of the power control system of a small PWR with coolant temperature perturbation

  • Li, Xiaoyu;Li, Chuhao;Hu, Yang;Yu, Yongqi;Zeng, Wenjie;Wu, Haibiao
    • Nuclear Engineering and Technology
    • /
    • 제54권6호
    • /
    • pp.2048-2054
    • /
    • 2022
  • The coolant temperature feedback coefficient is an important parameter of reactor core power control system. To study the coolant temperature feedback coefficient influence on the core power control system of small PWR, the core power control system is built with the nonlinear model and fuzzy control theory. Then, the uncertainty quantification method of reactor core parameters is established based on the Latin hypercube sampling method and the Bootstrap method. Finally, under the conditions of reactivity step perturbation and coolant inlet temperature step perturbation, uncertainty analysis for two cases is carried out. The result shows that with fuzzy controller and fuzzy PID controller, the uncertainty of the coolant temperature feedback coefficient affects the core power control system, and the maximum uncertainties of core relative power, coolant temperature deviation, fuel temperature deviation and total reactivity are acceptable.

반응도 제한법에 의한 KMRR의 시간 최적 출력 제어 (Time-Optimal Power Control for KMRR Using Reactivity Constraint Method)

  • Lee, Byung-Ill;Kim, Myung-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제23권1호
    • /
    • pp.30-40
    • /
    • 1991
  • 한국형 다목적 연구로(KMRR)의 출력 자동제어를 위하여 새로운 제어이론으로 등장한 반응도 제한법을 시간 최적제어에 적용하여 보았다. 반응도 제한법은 원자로내의 반응도가 제어봉의 움직임으로 상쇄될 수 있는 반응도보다 항상 작도록 제한하여 준다. 이 방법을 시간 최적제어에 이용하기 위해 서 는 일정 한 원자로주기를 유지하도록 하는 반응도 값을 Dynamic Period Equation으로 얻어야 한다. 따라서 2점 동특성 방정식에 의한 Dynamic Period Equation이 새로 유도되었다. 이 제어법을 시험하기 위해 수학적 모델로 구성된 제어모델을 원자로 모의 전산코드인 KMRSIM에 적용하여 보았다. 반응도제한법도 출력의 시간 최적제어에서 신뢰할만한 결과를 보여줌을 알았다.

  • PDF

CANDU-PHWR의 증분단면적 계산방법에 대한 연구 (Incremental Cross Sections for CANDU-PHWR Core Analysis)

  • Hang Bok Choi;Seong Yun Kim;Chang Hyun Chung
    • Nuclear Engineering and Technology
    • /
    • 제17권2호
    • /
    • pp.98-104
    • /
    • 1985
  • 가압중수로인 CANDU의 노심에는 많은 반응도 조절장치들이 분포되어 있어 출력분포와 잉여반응도를 조절하며, 이러한 장치들의 효자는 노심해서에서 증분격자상수로 나타낸다. 격자코드인 WIMS를 사용하여 2군 군정수를 계산하고 이를 이용하여 SUPERCELL코드로 증분 격자상수를 생산하였다. 증분격자상수는 조정봉과 지역조절장치에 대해 노심해석을 통해 평가하였으며 반응도가와 채널출력을 참고 자료와 비교하였다. 반응도가와 최대채널출력 오차가 참고값에 대해 각각 0.97%와 0.6% 범위 내에서 나타났다.

  • PDF

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • 제53권11호
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.

SP-100 우주선 원자로를 위한 고장진단 및 제어 통합 시스템 (A Fault Diagnosis and Control Integrated System for an SP-100 Space Reactor)

  • 나만균;양헌영;임동혁;이윤준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.231-232
    • /
    • 2007
  • In this paper, a fault diagnosis and control integrated system (FDCIS) was developed to control the thermoelectric (TE) power in the SP-100 space reactor. The objectives of the proposed model predictive control were to minimize both the difference between the predicted TE power and the desired power, and the variation of control drum angle that adjusts the control reactivity. Also, the objectives were subject to maximum and minimum control drum angle and maximum drum angle variation speed. A genetic algorithm was used to optimize the model predictive controller. The model predictive controller was integrated with a fault detection and diagnostics algorithm so that the controller can work properly even under input and output measurement faults. With the presence of faults, the control law was reconfigured using online estimates of the measurements. Simulation results of the proposed controller showed that the TE generator power level controlled by the proposed controller could track the target power level effectively even under measurement faults, satisfying all control constraints.

  • PDF

퍼지 제어기를 사용한 조류발전의 MPPT 제어법 (The MPPT Control Method for The Seaflow Generation by Using Fuzzy Controller)

  • 최재신;김영조;김영석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.154-156
    • /
    • 2007
  • This paper proposes new control method of maximum power point tracking for the seaflow generation system. This control system is performed by using the duty ratio control of DC/DC converter. An advantage of MPPT(Maximum Power Point Tracking)control method presented in this paper is not necessary to use the seaflow turbine characteristic at various seaflow speed and measure the tidal speed and/or the rotation speed of the seaflow generator. Therefore the resulting system ha s the characteristics of lower cost, higher efficiency and lower complexity. The fuzzy controller is used to control the duty ratio of DC/DC converter. So the reactivity and the reliablilty of the generation system is developed. Proposed control method was analyzed mathematically and tested by computer simulation by using Matlab $Simulink^{(R)}$.

  • PDF

병원용 서비스 로봇의 제어시스템 (Control System of Service Robot for Hospital)

  • 박태호;최경현;이석희
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

병원용 서비스 로봇 SmartHelper 개발에 관한 연구 (Study on Development of Hospital Service Robot SmartHelper)

  • 최경현;이석희;박태호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF