• Title/Summary/Keyword: Reactive gaseous mercury

Search Result 6, Processing Time 0.014 seconds

Removal of Gaseous Elemental Mercury Using Reactive Species Produced by Dielectric Barrier Discharge (저온 플라즈마 반응에 의해 생성된 반응활성종을 이용한 원소상 수은의 제거)

  • Jeong, Ju-Young;Jurng, Jong-Soo
    • Journal of Environmental Science International
    • /
    • v.15 no.5
    • /
    • pp.479-484
    • /
    • 2006
  • Removal of elemental mercury $(Hg^0)$ with the reactive species produced from dielectric barrier discharge (DBD) was studied. We investigated the effect of operating parameters such as the applied voltage, residence time, initial concentration and co-existence of other pollutants. The removal of $(Hg^0)$ was significantly promoted by an increase in the applied voltage of the DBD reactor system. It is important to note that at the same input power, the removal efficiency of $(Hg^0)$ was much higher than that of NO gas. These results imply that if the DBD system is used as a NOx treatment facility, it is capable of removing $(Hg^0)$ simultaneously with NOx.

Quantification of Total Mercury in Antarctic Surface Snow using ICP-SF-MS: Spatial Variation from the Coast to Dome Fuji

  • Han, Yeong-Cheol;Huh, Young-Sook;Hong, Sung-Min;Hur, Soon-Do;Motoyama, Hideaki;Fujita, Shuji;Nakazawa, Fumio;Fukui, Kotaro
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4258-4264
    • /
    • 2011
  • The total mercury concentration ($Hg_T$) of surface snow samples collected along a ~1500 km transect in east Queen Maud Land was determined using inductively coupled plasma sector field mass spectrometry to address the behavior of Hg on the Antarctic Plateau. Due to the volatile nature of mercury, measures were taken against Hg loss from standard solutions by choosing appropriate container material and stabilizing agents. Glass bottles with Teflon-lined caps were superior to Teflon and polyethylene containers in protecting against Hg loss, but addition of gold chloride ($AuCl_3$) or bromine chloride (BrCl) was necessary to ensure preservation of Hg. As Hg loss was also observed in snowmelt samples, our analysis may underestimate the actual amount of HgT in the snow. Even so, the measured HgT was still very low (< 0.4-10.8 pg $g^{-1}$, n = 44) without a signal of depositional enhancement accompanying photo-oxidation of atmospheric elemental mercury in austral midsummer. Moreover, the dynamic variation along the traverse implies spatial and temporal heterogeneity in its source processes.

Estimation of Atmospheric Mercury Wet-deposition to Lake So-yang (대기 중 수은의 습식 침적 평가: 소양호를 중심으로)

  • Ahn, Myung-Chan;Han, Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.6
    • /
    • pp.693-703
    • /
    • 2008
  • The important source of the mercury in water-column is the influx of atmosphere mercury, via dry and wet deposition. In this study, wet deposition of mercury was estimated to be $14.56{\mu}g/m^2$ during 15 months at the Lake Soyang, which is a little higher than those observed in the several rural US Mercury Deposition Network (MDN) sites with similar precipitation depth. The mercury concentration in precipitation did not show a positive correlation with atmospheric RGM (reactive gaseous mercury) concentration, while maintaining good correlation with atmospheric $PM_{2.5}$ at Soyang Dam. This result suggests that the contribution of particulate Hg to the total Hg wet deposition should be more significant than that of RGM. In this study, both precipitation depth and precipitation type affected the amount of wet deposition and the concurrent mercury levels in precipitation. There was generally an inverse relationship between precipitation depth and Hg concentration in precipitation. Precipitation type was another factor that exerted controls on the Hg concentration in precipitation. As a result, the highest concentration of Hg was observed in snow, followed by in mixture (snow+rain) and in rain.

Source Identification of Gaseous Mercury Measured in New York State Using Hybrid Receptor Modeling (수용원 모델을 사용한 대기 중 수은 오염원의 위치 추정에 대한 연구)

  • Han Young-Ji
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.179-189
    • /
    • 2006
  • Ambient gas phase mercury concentrations including elemental mercury ($Hg^0$) were measured at the Potsdam, Stockton, and Sterling sites in NY from 2000 to 2003. Also, concentrations of ambient reactive gaseous mercury (RGM; $Hg^{2+}$) were measured at the Potsdam site during one year. The contribution of RGM($4.2{\pm}6.4pg/m^3$) was about $0.2{\sim}3%$ of the total gas phase mercury concentration measured (TGM: $1.84{\pm}1.24,\;1.83{\pm}0.32,\;3.02{\pm}2.14ng/m^3$ in Potsdam. Stockton, and Sterling, respectively) at the receptor sites. Potential Source Contribution Function (PSCF), a hybrid receptor modeling incorporating backward trajectories was performed to identify source areas of TGM. Using PSCF, southern New York, North Carolina, and eastern Massachusetts were identified as important source areas in the United States, while the copper smelters and waste incinerators located in eastern Quebec and Ontario were determined to be significant sources in Canada. The Atlantic Ocean was suggested to be a possible mercury source. PSCF incorporating back-dispersion and deposition was applied for RGM , as well as PSCF based on 2-days back-trajectories. Two different approaches yielded considerably different results, primarily due to the consideration of dispersion rather than deposition. Using back-trajectory based PSCF, eastern Ohio, southern New York, and southern Pennsylvania where large coal -fired power plants area located were identified as the large sources in US. Metallurgical industry located in eastern Quebec was resolved as well. From the result of back-dispersion and deposition based PSCF, Pennsylvania, mining facilities around Lake Superior, Toronto, Boston, MA, Quebec, and coal power plants in NY were identified to be the significant source areas for Potsdam site.

Seasonal Variations in Mercury Deposition over the Yellow Sea, July 2007 through April 2008

  • Ghim, Young Sung;Oh, Hyun Sun;Kim, Jin Young;Woo, Jung-Hun;Chang, Young-Soo
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.3
    • /
    • pp.146-155
    • /
    • 2016
  • Spatial and temporal variations of mercury, including dry and wet deposition fluxes, were assessed over Northeast Asia, targeting the Yellow Sea, using meteorology and chemistry models. Four modeling periods, each representative of one of the four seasons, were selected. Modeling results captured general patterns and behaviors, and fell within similar ranges with respect to observations. However, temporal variations of mercury were not closely matched, possibly owing to the effects of localized emissions. Modeling results indicated that dry deposition is correlated with wind speed, while wet deposition is correlated with precipitation amount. Overall, the wet deposition flux of $66ng/m^2-day$ was about twice as large as the dry deposition flux of $32ng/m^2-day$, when averaged over the four modeling periods. Dry deposition occurred predominantly in the form of reactive gaseous mercury (RGM). In contrast, RGM accounted for only about two-thirds of wet deposition, while particulate mercury accounted for the remainder.

Characteristics of Atmospheric Speciated Gaseous Mercury in Chuncheon, Korea (춘천시 대기 중 가스상 수은 종 농도 특성에 관한 연구)

  • Gan, Sun-Yeong;Yi, Seung-Muk;Han, Young-Ji
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.382-391
    • /
    • 2009
  • Atmospheric speciated mercury concentrations including total gaseous mercury (TGM) and reactive gaseous mercury (RGM) were measured in Chuncheon from March 2006 to November 2008. Average concentrations were 2.10 ${\pm}$ 1.50 ng/$m^3$ and 3.00 ${\pm}$ 3.14 pg/$m^3$ for TGM and RGM, respectively. RGM concentrations were higher during daytime than nighttime probably because of high photochemical activities. We found that RGM concentration considerably increased as ozone increased when fog occurred, indicating that ozone was the important oxidant for $Hg^0$ in aqueous phase. TGM concentration showed positive correlations with CO and $PM_{10}$ which can transport in long-range, but there was no correlation with $NO_2$. Considering that major source of mercury is combustion process, this result showed that local sources did not significantly impact on TGM concentration in Chuncheon. Five-day backward trajectories were calculated for the samples representing high and low concentrations of TGM, and determined that industrialized area of China including Shenyang and Beijing influenced TGM concentrations in Chuncheon.