• Title/Summary/Keyword: Reactive force field

Search Result 25, Processing Time 0.027 seconds

Fabrication of a Graphene Nanoribbon with Electron Beam Lithography Using a XR-1541/PMMA Lift-Off Process

  • Jeon, Sang-Chul;Kim, Young-Su;Lee, Dong-Kyu
    • Transactions on Electrical and Electronic Materials
    • /
    • v.11 no.4
    • /
    • pp.190-193
    • /
    • 2010
  • This report covers an effective fabrication method of graphene nanoribbon for top-gated field effect transistors (FETs) utilizing electron beam lithography with a bi-layer resists (XR-1541/poly methtyl methacrylate) process. To improve the variation of the gating properties of FETs, the residues of an e beam resist on the graphene channel are successfully taken off through the combination of reactive ion etching and a lift-off process for the XR-1541 bi-layer. In order to identify the presence of graphene structures, atomic force microscopy measurement and Raman spectrum analysis are performed. We believe that the lift-off process with bi-layer resists could be a good solution to increase gate dielectric properties toward the high quality of graphene FETs.

Atomic Study of Oxidation of Si(001) surface by MD Simulation

  • Pamungkas, Mauludi Ariesto;Kim, Byung-Hyun;Joe, Min-Woong;Lee, Kwang-Ryeol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.360-360
    • /
    • 2010
  • Very initial stage of oxidation process of Si (001) surface was investigated using large scale molecular dynamics simulation. Reactive force field potential was used for the simulation owing to its ability to handle charge variation associated with the oxidation reaction. To know the detail mechanism of both adsorption and desorption of water molecule (for simulating wet oxidation), oxygen molecule (for dry oxidation) and their atom constituents, interaction of one molecule with Si surface was carefully observed. The simulation is then continued with many water and oxygen molecules to understand the kinetics of oxide growth. The results show that possibilities of desorption and adsorption depend strongly on initial atomic configuration as well as temperature. We observed a tendency that H atoms come relatively into deeper surface or otherwise quickly desorbed away from the silicon surface. On the other hand, most oxygen atoms are bonded with first layer of silicon surface. We also noticed that charge transfer is only occur in nearest neighbor regime which has been pointed out by DFT calculation. Atomic structure of the interface between the oxide and Si substrate was characterized in atomic scale.

  • PDF

Electric Field Induced Super-cooling System for Long Term Dry-aged Beef Loin

  • Park, Sin-Young;Kim, Hack-Youn
    • Food Science of Animal Resources
    • /
    • v.40 no.2
    • /
    • pp.286-296
    • /
    • 2020
  • This study investigates the utilization of an electric-field-induced super cooling system in long-term dry aging of beef loin. Analyzed quality properties of dry-aged beef loin applied with electric field refrigeration (EFR) versus commercial refrigeration (CR). Quality properties was including aging loss, pH, water holding capacity (WHC), cooking loss, color, warner-bractzler shear force (WBSF), total plate count (TPC), and thiobarbituric acid reactive substances (TBARS). Aging loss of wk 1 EFR was significantly lower than CR (p<0.05). pH of EFR was slow change tendency compared CR. WHC of both aging methods were higher with increase in aging duration. Cooking loss of wk 1, 2, 4, and 10 EFR were significantly lower than CR (p<0.05). Lightness and redness of EFR was slow change tendency compared CR. However, yellowness of EFR was increased until wk 2, 3, and significantly decreased at wk 10 (p<0.05), but yellowness of CR was decreased until wk 3 and significantly increased with an increasing aging weeks (p<0.05). Both aging methods of WBSF was decreased with increase in aging weeks; however, wk 10 of CR was significantly lower than EFR (p<0.05). TPC after wk 3 EFR groups were significantly lower than CR groups (p<0.05), and TBARS of EFR groups were significantly lower than CR (p<0.05). The present results show that application of the EFR system for dry aging beef loin can extends its shelf life and induce changes of several aging properties in similar to commercial aging.

Growth and Properties of CrNx/TiNy/Al Based on N2 Gas Flow Rate for Solar Thermal Applications

  • Ju, Sang-Jun;Jang, Gun-Eik;Jang, Yeo-Won;Kim, Hyun-Hoo;Lee, Cheon
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.3
    • /
    • pp.146-149
    • /
    • 2016
  • The CrN/TiN/Al thin films for solar selective absorber were prepared by dc reactive magnetron sputtering with multi targets. The binary nitride CrN layer deposited with change in N2 gas flow rates. The gas mixture of Ar and N2 was an important parameter during sputtering deposition because the metal volume fraction (MVF) was controlled by the N2 gas flow rate. In this study, the crystallinity and surface properties of the CrN/TiN/Al thin films were estimated by X-ray diffraction (XRD), atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). The composition and depth profile of thin films were investigated using Auger electron spectroscopy (AES). The absorptance and reflectance with wavelength spectrum were recorded by UV-Vis-NIR spectrophotometry at a range of 300~1,100 nm.

Enhanced effect of magnetic anisotropy on patterned Fe-Al-O thin films

  • N.D. Ha;Kim, Hyun-Bin;Park, Bum-Chan;Kim, C.G.;Kim, C.O.
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.239-239
    • /
    • 2003
  • As a result of the recent miniaturization and enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with a high magnetic permeability in the high frequency range, a high saturation magnetization, a high electrical resistivity, and a low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm diameter and 1$\mu\textrm{m}$ thickness were deposited on Si wafer, using RE magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2m Torr, O$_2$ partial Pressure of 5%, Input power of 400w, and Al pellets on an Fe disk with purity of 99.9%. For continuous thin film is the 4Ms of 19.4kG, H$\sub$c/ of 0.6Oe, H$\sub$k/ of 6.0Oe and effective permeability of 2500 up to 100MHz. In this work, we expect to enhanced effect of magnetic anisotropy on patterned of Fe-Al-O thin films.

  • PDF

Effect of the Surface Roughness of ITO Thin Films on the Characteristics of OLED Device (ITO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, Bong-Kun;Lee, Kyu-Mann
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.49-52
    • /
    • 2009
  • We have investigated the effect of the surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of ITO thin films, we have processed photolithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the ITO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the ITO thin films. Device structure was ITO/$\alpha$-NPD/DPVB/Alq3/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer (minolta CS-1000A). The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

  • PDF

Effect of 3C-SiC buffer layer on the characteristics of AlN films supttered on Si Substrates (3C-SiC 버퍼층이 Si 기판위에 스퍼터링된 AlN 막의 특성에 미치는 영향)

  • Ryu, Kyeong-Il;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.3-6
    • /
    • 2009
  • Aluminum nitride (AIN) thin films were deposited on a polycrystalline 3C-SiC intermediate layer by a pulsed reactive magnetron sputtering system. Characteristics of the AIN/SiC heterostructures were investigated by field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR). The columnar structure of AIN thin films was observed by FE-SEM. The surface roughness of AlN films on the 3C-SiC buffer layer was measured using AFM. The XRD pattern of AlN films on SiC buffer layers was highly oriented at (002). Full width at half maximum (FWHM) of the rocking curve near (002) reflections was $1.3^{\circ}$. The infrared absorbance spectrum indicated that the residual stress of AIN thin films grown on SiC buffer layers was nearly negligible. The 3C-SiC intermediate layers are promising for the realization of nitride based electronic and mechanical devices.

  • PDF

A Laterally-Driven Bistable Electromagnetic Microrelay

  • Ko, Jong-Soo;Lee, Min-Gon;Han, Jeong-Sam;Go, Jeung-Sang;Shin, Bo-Sung;Lee, Dae-Sik
    • ETRI Journal
    • /
    • v.28 no.3
    • /
    • pp.389-392
    • /
    • 2006
  • In this letter, a laterally-driven bistable electromagnetic microrelay is designed, fabricated, and tested. The proposed microrelay consists of a pair of arch-shaped leaf springs, a shuttle, and a contact bar made from silicon, low temperature oxide (LTO), and gold composite materials. Silicon-on-insulator wafers are used for electrical isolation and releasing of the moving microstructures. The high-aspect-ratio microstructures are fabricated using a deep reactive ion etching (DRIE) process. The tandem-typed leaf springs with a silicon/gold composite layer enhance the mechanical performances while reducing the electrical resistance. A permanent magnet is attached at the bottom of the silicon substrate, resulting in the generation of an external magnetic field in the direction vertical to the surface of the silicon substrate. The leaf springs show bistable characteristics. The resistance of the pair of leaf springs was $7.5\;{\Omega}$, and the contact resistance was $7.7\;{\Omega}$. The relay was operated at ${\pm}0.12\;V$.

  • PDF

Effect of surface roughness of AZO thin films on the characteristics of OLED device (AZO 박막의 표면 거칠기에 따른 OLED 소자의 특성)

  • Lee, B.K.;Lee, K.M.
    • Journal of the Semiconductor & Display Technology
    • /
    • v.9 no.4
    • /
    • pp.25-29
    • /
    • 2010
  • We have investigated the effect of surface roughness of TCO substrate on the characteristics of OLED (organic light emitting diodes) devices. In order to control the surface roughness of AZO thin films, we have processed photo-lithography and reactive ion etching. The micro-size patterned mask was used, and the etching depth was controlled by changing etching time. The surface morphology of the AZO thin film was observed by FESEM and atomic force microscopy (AFM). And then, organic materials and cathode electrode were sequentially deposited on the AZO thin films. Device structure was AZO/${\alpha}$-NPD/DPVB/$Alq_3$/LiF/Al. The DPVB was used as a blue emitting material. The electrical characteristics such as current density vs. voltage and luminescence vs. voltage of OLED devices were measured by using spectrometer. The current vs. voltage and luminance vs. voltage characteristics were systematically degraded with increasing surface roughness. Furthermore, the retention test clearly presented that the reliability of OLED devices was directly influenced with the surface roughness, which could be interpreted in terms of the concentration of the electric field on the weak and thin organic layers caused by the poor step coverage.

High Frequency Properties of Patterned Fe-Al-O Thin Films

  • N.D. Ha;Park, B.C.;B.K. Min;Kim, C.G.;Kim, C.O.
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.194-194
    • /
    • 2003
  • As a result of the recent miniaturization an enhancement in the performance of thin film inductors and thin film transformers, there are increased demands for the thin films with high magnetic permeability in the high frequency range, high saturation magnetization, in high electrical resistivity, and low coercive force. In order to improve high frequency properties, we will investigate anisotropy field by shape and size of pattern. The Fe-Al-O thin films of 16mm and 1 $\mu\textrm{m}$ thickness were deposited on Si wafer, using RF magnetron reactive sputtering technique with the mixture of argon and oxygen gases. The fabricating conditions are obtained in the working partial pressure of 2mTorr, O$_2$ partial pressure of 5%, input power of 400W, and Al pellets on an Fe disk with purity of 99,9%. Magnetic properties of the continuous films as followed: the 4$\pi$M$\_$s/ of 19.4kG, H$\_$c/ of 0.6Oe, H$\_$k/ of 6.0Oe and effective permeability of 2500 up to 100㎒ were obtained. In this work, we expect to enhance effect of magnetic anisotropy on patterned of Fe-Al-O thin films.

  • PDF