• Title/Summary/Keyword: Reactive diluents

Search Result 19, Processing Time 0.02 seconds

Extraction Equilibria of Acrylic Acid with Amine Extractants (아민계 추출제에 의한 아크릴산의 추출 평형)

  • Lee, Yong Hwa;Lee, Jun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.103-107
    • /
    • 2014
  • Acrylic acid is a commodity chemical which is applicable for various industries such as polymer and textile industry. Currently, it has been produced by chemical synthesis from petroleum. However, due to the high price of petroleum and global $CO_2$ emission, renewable materials such as sugar are interesting alternative carbon sources for the biological production of acrylic acid. For an economic production of acrylic acid from renewable carbon sources, a cost effective separation process for acrylic acid should be needed. In this study, reactive extraction by TOA (tri-n-octylamine) was used for the recovery of acrylic acid from its aqueous solutions. The effects of polarity of diluents and concentration of TOA on extraction equilibrium were investigated. The extraction efficiency was proportional to concentration of TOA and polarity of diluents and its value was more than 95% in the case of sufficient concentration of TOA. From IR spectroscopy, it was concluded that the ratio of (1,1) acid-amine complex was increased and the ratio of acid dimer was decreased with concentration of TOA. Equilibrium model based on IR spectroscopy was well fitted with experimental data.

Improvement of Brightness in UV Curing Type Prism Sheet by Using Aromatic Groups (방향족 도입에 의한 자외선 경화형 프리즘시트의 휘도 개전)

  • Kim, Dong-Ryoul;Kim, Hyung-Il
    • Polymer(Korea)
    • /
    • v.33 no.5
    • /
    • pp.413-419
    • /
    • 2009
  • As the refractive index of the prism layer becomes higher, the optical performance of the prism sheet gets better and the efficiency of the LCD backlight unit is improved. In order to increase the refractive index of the prism layer, the ultraviolet curing type resins were prepared by mixing high refractive index materials containing aromatic groups and the multi-functional reactive diluents. By using 9,9-bis [4-(2-acryloyloxyethoxy)phenyl] fluorene, the refractive index of the prism layer was increased up to 1.58 and the brightness of the backlight unit was improved. Since the light source used in the backlight unit caused the yellowing in the prism sheet and deteriorated the brightness accordingly, the hindered amine light stabilizer was used to improve the yellowing resistance successfully.

Preparation and Properties of UV-Curable Polyurethane Acrylates(I) -Effect of Molecular Weights of Polyol and Diol with Low Molecular Weight into Polymer Chain- (UV-경화 폴리우레탄 아크릴레이트의 제조와 특성(I) -폴리올의 분자량과 저분자량 디올의 도입의 영향-)

  • 최준영;이동진;김한도
    • Textile Coloration and Finishing
    • /
    • v.11 no.4
    • /
    • pp.1-7
    • /
    • 1999
  • Urethane-acrylate propelymers for secondary coating of optical fiber and high - performance material were prepared from the 4,4'-diphenylmethane diisocyanate(MDI), poly(tetramethylene oxide)glycol(PTMG, Mw 650 or 1000), 1,6-hexanediol(HD), 2-hydroxyethyl acrylate(HEA), and dibutyltin dilaurate as a catalyst. UV-Curable polyurethane acrylates were formulated from the urethane-acrylate prepolymers, three types of reactive diluents(DTs) having mono-, di-, and trifunctional-phenoxyethyl acrylate(PEA), hexanediol diacrylate(HDDA), and trimethylolpropane triacrylate(TMPTA), and 1-hydtoxycyclohexyl phenyl ketone(Irgacure 184) as a photoinitiator. The UV-cured films of polyurethane acrylates were obtained by curing using a medium-pressure mercury lamp(U W/cm, $\lambda_{max}=365\;nm)$. In this work, the effects of molecular weights of polyol and diol with low molecular weight into polymer chain on mechanical and dynamic mechanical properties of UV-cured polyurethane acrylates were studied. The structure and properties of the films obtained from the UV photopolymerization of urethane-acrylate prepolymer were investigated by FT-IR spectroscopy, dynamic mechanical measurement, tensile testing, and X-ray diffractometry.

  • PDF

Production of Reactive Diluent for Epoxy Resin with High Chemical Resistance from Natural Oil : Optimization Using CCD-RSM (천연오일로부터 내화학성이 향상된 에폭시계 수지용 반응성 희석제의 제조 : CCD-RSM을 이용한 최적화)

  • Yoo, Bong-Ho;Jang, Hyun Sik;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.31 no.2
    • /
    • pp.147-152
    • /
    • 2020
  • In this study, we dedicated to optimize the process for a reactive diluent for epoxy resin of improved chemical resistance by using cardanol, a component of natural oil of cashew nut shell liquid (CNSL). The central composite design (CCD) model of response surface methodology (RSM) was used for the optimization. The quantitative factors for CCD-RSM were the cardanol/ECH mole ratio, reaction time, and reaction temperature. The yield, epoxy equivalent, and viscosity were selected as response values. Basic experiments were performed to design the reaction surface analysis. The ranges of quantitative factors were determined as 2~4, 4~8 h, and 100~140 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. From the result of CCD-RSM, the optimum conditions were determined as 3.33, 6.18 h, and 120 ℃ for the cardanol/ECH reaction mole ratio, reaction time, and reaction temperature, respectively. At these conditions, the yield, epoxy equivalence, and viscosity were estimated as 100%, 429.89 g/eq., and 41.65 cP, respectively. In addition, the experimental results show that the error rate was less than 0.3%, demonstrating the validity of optimization.

Synthesis and Cured Film Properties of UV-Curable Caprolactone-Modified Urethane Acrylate Oligomers (광경화용 카프로락톤 변성 우레탄 아크릴레이트 올리고머 합성과 경화필름 물성에 관한 연구)

  • Kim, Jeong-Yeol;Moon, Byoung-Joon;Kang, Doo-Whan;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.34 no.6
    • /
    • pp.574-578
    • /
    • 2010
  • In this study, the caprolactone modified hydroxy acrylates (CHAs) were synthesized by ring-opening reaction of caprolactone and 2-hydroxyethyl acrylate (2-HEA) as initiator. Also, the caprolactone modified urethane acrylate (UA) oligomers were synthesized by condensation reaction of previously synthesized CHAs, 2-hydroxyethyl acrylate (2-HEA) and hexamethylene diisocyanate trimer (HDT). Using the hydroxy number of CHAs, the molecular weights of the CHAs were calculated easily and their molecular weight was similar to the theoretical molecular weight of them. The viscosity of UA oligomers decreased as increasing a content of CHA in the UA oligomer. Cure films were prepared from UA oligomer, reactive diluents, and UV initiator to investigate their physical properties. The thermal stability and color difference on high temperature for the cured film were improved as increasing the crosslinking density. Their surface hardness was also increased as increasing crosslinking density of the cured films, but their elongation at break was decreased.

Synthesis of UV-Curable Six-Functional Urethane Acrylates Using Pentaerytritol Triacrylate and Their Cured Film Properties (Pentaerytritol Triacrylate를 이용한 광경화용 6관능 우레탄 아크릴레이트 합성과 경화필름 물성에 관한 연구)

  • Moon, Byoung-Joon;Hwang, Seok-Ho
    • Polymer(Korea)
    • /
    • v.35 no.2
    • /
    • pp.183-188
    • /
    • 2011
  • Pentaerytritol triacrylate (PETA) was synthesized by a condensation reaction between pentaerytritol and acrylic acid. The highest yield of PETA was obtained when heptane was used as a solvent under the 1:4 mole ratio of pentaerytritol and acrylic acid. The 6-functional urethane acrylates(UA) were also synthesized by a condensation reaction between PETA and diisocyanate. Cured films were prepared from the mixtures of UA oligomer, reactive diluents and UV initiator to investigate their physical properties. The thermal stability of the aliphatic urethane acrylate was better than that of the aromatic urethane acrylate. The UA-2 showed good hardness and scratch resistance properties while the UA-l with a high degree of curing density exhibited a better chemical resistance. All the UA oligomers showed fairly good adhesion strengths but the other physical properties of UA-3 were poor due to its low curing density.

UV-Curable Fluorinated Crosslinkable Polyurethane-Acrylates for Marine Antifouling Coatings

  • Park, Jin-Myung;Kim, Sung Yeol;An, Seung-Kook;Lee, Young-Hee;Kim, Han-Do
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.148-157
    • /
    • 2017
  • To prepare UV-curable polyurethane-acrylate oligomer, NCO-terminated urethane prepolymers with trimethylolpropane, [TMP; 0 (0), 0.1 (0.021) and 0.2 (0.043) mole (mole fraction)] as crosslinkable tri-functional chain extender were end-capped with pentaerythritol triacrylate [PETA; 2.0 (0.400), 1.7 (0.354) and 1.4 (0.304) mole (mole fraction)] with one hydroxyl group/three vinyl functionalities. The stable as-formulated UV-curable polyurethane-acrylates [stable mixtures of PETA-capped oligomer/reactive acrylic monomer diluents without/with heptadecafluorodecyl methacrylate (PFA; 0, 6 and 9 wt%)] were formed up to 0.2 (0.043) mole (mole fraction) of TMP content in the prepolymer, while homogeneous-mixing failed at 0.3 (0.068) mole (mole fraction), in which the crosslink density in NCO-terminated urethane prepolymer was too high to enable the formation of stable mixture. This study examined the effect of TMP/PETA molar ratio and heptadecafluorodecyl methacrylate (PFA) content (wt%) on the properties of UV-cured polyurethane-acrylates as marine antifouling coating materials. The properties of UV-cured polyurethane-acrylate were found to be significantly dependent on the crosslinkable TMP/PETA ratio and PFA content. With the increasing of the TMP and PFA contents, the contact angles increased, and consequently the surface tension decreased. The adhesion of algae/barnacles to PFA contained film samples were found to be sufficiently weak to allow their easy removal. These results suggest that the UV-cured samples containing PFA have strong potential as coating materials for antifouling applications.

Styrene-free Synthesis of Flame-retardant Vinyl Ester Resin Films for Hot-melt Prepreg Process (핫멜트 프리프레그 공정용 난연성 비닐에스터 수지 필름의 무 스티렌 합성)

  • Jiseon, Kang;Minji, Kim;Mongyoung, Huh;Seok Il, Yun
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.412-418
    • /
    • 2022
  • Flame-retardant vinyl ester (VE) resin films were developed from the mixtures of brominated and non-brominated epoxy resins via esterification with methacrylic acid without reactive diluents. The films were used to fabricate carbon fiber (CF) prepregs via a hot melt impregnation process. The viscosity of VE resins suitable for film production was optimized by mixing low-viscosity bisphenol-A and high-viscosity brominated bisphenol-A epoxy precursors. Increasing the bromine content of the cured VE resin further increased the limited oxygen index (LOI) (39%), storage modulus (2.4 GPa) at 25℃ and residual carbonization (16.1%) values compared to non-brominated VE. Manual layup of as-prepared VE prepregs with subsequent curing led to the successful fabrication of CF-reinforced composites with high tensile and flexural strength. The results from the study hold high promise for a styrene-free, environmentally friendly VE composite process in the future.

Application of UV Curable Coating for the Surface Protection of Polymeric Materials: PVC and Polystyrene (고분자 물질의 표면 보호를 위한 자외선 경화 도료의 응용)

  • Moon, Myung-Jun;Park, Jin-Hwan;Lee, Gun-Dae;Suh, Cha-Soo;Kim, Jong-Rae
    • Applied Chemistry for Engineering
    • /
    • v.2 no.2
    • /
    • pp.175-184
    • /
    • 1991
  • Ultraviolet curable coatings are often used to protect the surface of polymer materials exposed to the ultraviolet radiation. However, the adhesion of epoxy acrylate on poly(vinyl chloride) and the UV curable coating on polystyren are poor. The objective of this work was to improve the adhesion of coating according to various formulations of the reactive diluents and finishing methods using the photografting of multifunctional acrylate and the surface activation on polymer surface impregnated a phtoinitiator. The addition of Tripropylene glycole diacrlate in the formulation of coating results in the improvement of adhesion of coating due to the flexibility. But the increase of the crosslinking density which results from the oxidation of surface during the exposure of UV radiation caused the loss of adhesion of coating exept the photografting method. In the trimethylolpropane triacrylate the improvement of adhesion are considerable due to the chemical bond between multifundtional acrylate and surface. From this work we expect to achieve the varity and functionality in the formulation of coating according to the photografting and surface activating of polymer.

  • PDF