• Title/Summary/Keyword: Reactive Method

Search Result 1,517, Processing Time 0.027 seconds

Coordination control method between FACTS and Reactive power sources for local voltage control (지역전압 안정화를 위한 FACTS와 조상설비간의 협조제어기법)

  • Lee, Geun-Joon;Lee, Hyun-Chul;Yoon, Jong-Su;Jang, B.H.;Jung, S.W.;Bak, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2008.11a
    • /
    • pp.181-183
    • /
    • 2008
  • This paper suggests local voltage control method to achieve coordinative control between STATCOM and other reactive power resources, such as Shunt Capacitor/Reactors and OLTC. Voltage/Reactive power control has various difficult aspects to control because of analysis and system dynamics error. This control method suggests practical algorithm regarding system voltage and reactive power status which is easy to implement in substation basis. In normal status, STATCOM-Shunts-OOTC are in operation. In emergency status, OLTC is locked. This algorithm is tested and verified in EMTDC.

  • PDF

Improved Reactive Power Sharing and Harmonic Voltage Compensation in Islanded Microgrids Using Resistive-Capacitive Virtual Impedance

  • Pham, Minh-Duc;Lee, Hong-Hee
    • Journal of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.1575-1581
    • /
    • 2019
  • Due to the mismatched line impedance among distributed generation units (DGs) and uncontrolled harmonic current, the droop controller has a number of problems such as inaccurate reactive power sharing and voltage distortion at the point of common coupling (PCC). To solve these problems, this paper proposes a resistive-capacitive virtual impedance control method. The proposed control method modifies the DG output impedance at the fundamental and harmonic frequencies to compensate the mismatched line impedance among DGs and to regulate the harmonic current. Finally, reactive power sharing is accurately achieved, and the PCC voltage distortion is compensated. In addition, adaptively controlling the virtual impedance guarantees compensation performance in spite of load changes. The effectiveness of the proposed control method was verified by experimental results.

Alleviate Current Distortion of Dual-buck Inverter During Reactive Power Support (듀얼벅 인버터의 무효전력 보상 시 전류 왜곡 저감)

  • Han, Sanghun;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.2
    • /
    • pp.134-141
    • /
    • 2022
  • This study presents a method for reducing current distortion that occurs when a dual-buck inverter generates reactive power. Dual-buck inverters, which are only capable of unity power factor operation, can generate reactive power capabilities by modifying a modulation technique. However, under non-unity power factor conditions, current distortion occurs at zero-crossing points of grid voltage and output current. This distortion is caused by parasitic capacitors, dead-time, and discontinuous conduction mode operation. This study proposes a modified modulation method to alleviate the current distortion at zero-crossing point of the grid voltage. A repetitive controller is applied to reduce this distortion of the output current. A 1 kVA prototype is built and tested. Simulation and experimental results demonstrate the effectiveness of the proposed method.

A Development of Monitoring and Control System for Improved the Voltage Stability in the Power System (전력계통의 전압안정도향상을 위한 감시제어시스템 개발)

  • Lee, Hyun-Chul;Jeoung, Ki-Suk;Park, Ji-Ho;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.437-443
    • /
    • 2013
  • This paper was developed a monitoring and control system to use reactive power control algorithm. This algorithm could be improved voltage stability in power system. This method was controlled the voltage for stability improvement, effective usage of reactive power, and the increase of the power quality. PMS(Power Management System) has been calculate voltage sensitivity, and control reactive power compensation device. The voltage control was used to the FACTS, MSC/MSR(Mechanically Switched Capacitors/Reactors), and tap of transformer in power system. The reactive power devices in power system were control by voltage sensitivity ranking of each bus. Also, to secure momentary reactive power, it had been controlled as the rest of reactive power in the each bus. In here, reactive power has been MSC/MSR. The simulation result, First control was voltage control as fast response control of FACTS. Second control was voltage control through the necessary reactive power calculation as slow response control of MSR/MSR. Third control was secured momentary reactive reserve power. This control was method by cooperative control between FACTS and MSR/MSC. Therefore, the proposed algorithm was had been secured the suitable reactive reserve power in power system.

A Reactive Chord for Efficient Network Resource Utilization in Mobile P2P Environments (모바일 P2P 환경에서 효율적인 네트워크 자원 활용을 위한 반응적인 코드)

  • Yoon, Young-Hyo;Kwak, Hu-Keun;Kim, Cheong-Ghil;Chung, Kyu-Sik
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.2
    • /
    • pp.80-89
    • /
    • 2009
  • A DHT(Distributed Hash Table) based P2P is a method that compensates disadvantages of the existing unstructured P2P method. If a DHT algorithm is used, it can do fast data search and maintain search efficiency independent of the number of peers. The peers in a DHT method send messages periodically to keep the routing table updated. In a mobile environment, the peers in a DHT method should send messages more frequently to keep the routing table updated and reduce the failure of requests. However this results in increasing the overall network traffic. In this paper, we propose a method to reduce the update load of a routing table in the existing DHT by updating it in a reactive way. In the proposed reactive method, a routing table is updated only if a data request is coming whereas it is updated periodically in the existing proactive method. We perform experiments using Chord simulator(I3) made by UC Berkely. The experimental results show the performance improvement of the proposed method compared to the existing method.

Efficient Kinect Sensor-Based Reactive Path Planning Method for Autonomous Mobile Robots in Dynamic Environments (키넥트 센서를 이용한 동적 환경에서의 효율적인 이동로봇 반응경로계획 기법)

  • Tuvshinjargal, Doopalam;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.6
    • /
    • pp.549-559
    • /
    • 2015
  • In this paper, an efficient dynamic reactive motion planning method for an autonomous vehicle in a dynamic environment is proposed. The purpose of the proposed method is to improve the robustness of autonomous robot motion planning capabilities within dynamic, uncertain environments by integrating a virtual plane-based reactive motion planning technique with a sensor fusion-based obstacle detection approach. The dynamic reactive motion planning method assumes a local observer in the virtual plane, which allows the effective transformation of complex dynamic planning problems into simple stationary ones proving the speed and orientation information between the robot and obstacles. In addition, the sensor fusion-based obstacle detection technique allows the pose estimation of moving obstacles using a Kinect sensor and sonar sensors, thus improving the accuracy and robustness of the reactive motion planning approach. The performance of the proposed method was demonstrated through not only simulation studies but also field experiments using multiple moving obstacles in hostile dynamic environments.

A Study on the Compensation of Reactive Power by III, IV Quadrant Phase Controlled Rectifier (III, IV상한 위상제어정류기에 의한 무효전력 보상에 관한 연구)

  • 정연택;서영수;이사영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.3
    • /
    • pp.76-83
    • /
    • 1983
  • This paper describes the method of operating the phase controlled rectifier by controlling the firing angle in III, IV quadrant to absorb the lrading reactive power and of improving the waveform of ac current by driving dual converter. The system is intended to compensate the reactive power for any lagging load. Also, by the above method this paper enables us to improve the power factor and waveform referred to the source current and the dc output voltage in the converter.

  • PDF

HIPIMS Arc-Free Reactive Deposition of Non-conductive Films Using the Applied Material ENDURA 200 mm Cluster Tool

  • Chistyakov, Roman
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.96-97
    • /
    • 2012
  • In nitride and oxide film deposition, sputtered metals react with nitrogen or oxygen gas in a vacuum chamber to form metal nitride or oxide films on a substrate. The physical properties of sputtered films (metals, oxides, and nitrides) are strongly influenced by magnetron plasma density during the deposition process. Typical target power densities on the magnetron during the deposition process are ~ (5-30) W/cm2, which gives a relatively low plasma density. The main challenge in reactive sputtering is the ability to generate a stable, arc free discharge at high plasma densities. Arcs occur due to formation of an insulating layer on the target surface caused by the re-deposition effect. One current method of generating an arc free discharge is to use the commercially available Pinnacle Plus+ Pulsed DC plasma generator manufactured by Advanced Energy Inc. This plasma generator uses a positive voltage pulse between negative pulses to attract electrons and discharge the target surface, thus preventing arc formation. However, this method can only generate low density plasma and therefore cannot allow full control of film properties. Also, after long runs ~ (1-3) hours, depends on duty cycle the stability of the reactive process is reduced due to increased probability of arc formation. Between 1995 and 1999, a new way of magnetron sputtering called HIPIMS (highly ionized pulse impulse magnetron sputtering) was developed. The main idea of this approach is to apply short ${\sim}(50-100){\mu}s$ high power pulses with a target power densities during the pulse between ~ (1-3) kW/cm2. These high power pulses generate high-density magnetron plasma that can significantly improve and control film properties. From the beginning, HIPIMS method has been applied to reactive sputtering processes for deposition of conductive and nonconductive films. However, commercially available HIPIMS plasma generators have not been able to create a stable, arc-free discharge in most reactive magnetron sputtering processes. HIPIMS plasma generators have been successfully used in reactive sputtering of nitrides for hard coating applications and for Al2O3 films. But until now there has been no HIPIMS data presented on reactive sputtering in cluster tools for semiconductors and MEMs applications. In this presentation, a new method of generating an arc free discharge for reactive HIPIMS using the new Cyprium plasma generator from Zpulser LLC will be introduced. Data (or evidence) will be presented showing that arc formation in reactive HIPIMS can be controlled without applying a positive voltage pulse between high power pulses. Arc-free reactive HIPIMS processes for sputtering AlN, TiO2, TiN and Si3N4 on the Applied Materials ENDURA 200 mm cluster tool will be presented. A direct comparison of the properties of films sputtered with the Advanced Energy Pinnacle Plus + plasma generator and the Zpulser Cyprium plasma generator will be presented.

  • PDF

Reactive Power Planning Considering Reactive Power Support Cost of Generator (전기 무효전력비용을 고려한 조상설비계획)

  • Lee, C.H.;Lee, S.H.;Park, J.K.
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.181-183
    • /
    • 1999
  • As one of ancillary services, voltage support and reactive power service should be compensed properly for its contribution. In this paper, a cost-based reactive power planning is presented. which minimizes the total cost of reactive power support of generators and VAR compensation facility installation. Reactive power support of generator is evaluated by the opportunity costs of reduced energy sale considering the varying SMP(system marginal price) in power market, Gradient projection method is applied to solve this reactive power planning using IEEE14 bus system.

  • PDF