• 제목/요약/키워드: Reactive Fuel

검색결과 121건 처리시간 0.028초

Power Flow Algorithm for Weakly Meshed Distribution Network with Distributed Generation Based on Loop-analysis in Different Load Models

  • Su, Hongsheng;Zhang, Zezhong
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.608-619
    • /
    • 2018
  • As distributed generation (DG) is connected to grid, there is new node-type occurring in distribution network. An efficient algorithm is proposed in this paper to calculate power flow for weakly meshed distribution network with DGs in different load models. The algorithm respectively establishes mathematical models focusing on the wind power, photovoltaic cell, fuel cell, and gas turbine, wherein the different DGs are respectively equivalent to PQ, PI, PQ (V) and PV node-type. When dealing with PV node, the algorithm adopts reactive power compensation device to correct power, and the reactive power allocation principle is proposed to determine reactive power initial value to improve convergence of the algorithm. In addition, when dealing with the weakly meshed network, the proposed algorithm, which builds path matrix based on loop-analysis and establishes incident matrix of node voltage and injection current, possesses good convergence and strong ability to process the loops. The simulation results in IEEE33 and PG&G69 node distribution networks show that with increase of the number of loops, the algorithm's iteration times will decrease, and its convergence performance is stronger. Clearly, it can be effectively used to solve the problem of power flow calculation for weakly meshed distribution network containing different DGs.

하이브리드 연소의 수치 모델링 전략에 관한 연구 (Study on the Strategy of Numerical Modeling for Hybrid Combustion)

  • 윤창진;김진곤;문희장
    • 항공우주시스템공학회지
    • /
    • 제1권2호
    • /
    • pp.37-42
    • /
    • 2007
  • This paper proposes a numerical modeling approach to simulate the hybrid combustion phenomena. From the physical understandings of hybrid combustion, the computational domain was separated into three regions: the solid fuel, gas phase reactive flow, and the interface between solid and fluid. Moreover, for the accurate calculation, computational grids for these regions was generated at every time step considering the instantaneous moving interface which are governed by the balance equations using thermal pyrolysis. In the domain of reactive flow, by virtue of diffusion flame structure, turbulent combustion modeling was introduced using either mixture fraction approach or mean reaction rate approach.

  • PDF

계통 안전성을 고려한 원자력발전의 부하추종 요건연구 (A Study on Requirement of Nuclear Power Plant Load Following Operation Condition Considering Power System Security)

  • 이현철;백영식;이근준
    • 전기학회논문지
    • /
    • 제61권11호
    • /
    • pp.1565-1570
    • /
    • 2012
  • Nuclear power generation is increasing domestic power supply ratio by lower CO2 emission and fuel prices. Currently, nuclear power generator has been operated with maximum power output. Therefore, nuclear power generator could be no effect to managing the reactive power reserve on power system. The reactive power reserve is calculated to the difference between maximum facility and operation generation capacity of the power system. This paper was proposed that load following of nuclear power is control by using 15-bus power system model. In the simulation result, power system is shown to safety state by operating load following of nuclear power generator. This method has be improved the supplied reliability through economic and efficient operation.

윈도우환경을 기반으로 한 최적전력조류 프로그램 팩키지 개발 (Windows Based Programming for Optimal Power Flow Analysis)

  • 김규호;이상봉;이재규;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.239-242
    • /
    • 2001
  • This paper presents a windows program package for solving security constrained OPF in interconnected power systems, which is based on the combined application of evolutionary programming(EP) and sequential quadratic programming(SQP). The objective functions are the minimization of generation fuel costs and system power losses. The control variables are the active power of the generating units, the voltage magnitude of the generator, transformer tap settings and SVC setting. The state variables are the bus voltage magnitude, the reactive power of the generating unit, line flows and the tie line flow. In OPF considering security, the outages are selected by contingency ranking method. The resulting optimal operating point has to be feasible after outages such as any single line outage(respect of voltage magnitude, reactive power generation and power flow limits). The OPF package proposed is applied to 10 machines 39 buses model system.

  • PDF

구리-바나듐 산화물 박막의 양극 특성 및 전 고상 전지의 제작 (Characteristics of Copper Vanadium Oxide$(Cu_{0.5}V_2O_5)$ Cathode for Thin Film Microbattery)

  • 임영창;남상철;박호영;윤영수;조원일;조병원;전해수;윤경석
    • 전기화학회지
    • /
    • 제3권4호
    • /
    • pp.219-223
    • /
    • 2000
  • 구리-바나듐 산화물 양극을 이용하여 $(Cu_{0.5}V_2O_5)$으로 구성된 전 고상의 리튬이차박막전지를 제작하였다. 구리-바나듐 산화물 박막은 reactive DC magnetron sputtering을 이용하여 co-sputtering에 의해 제조하였고 Lipon고체전해질은 순수한 질소 분위기 하에서 RF 스퍼터링으로 제조하였다. XRD분석을 통해 구리-바나듐 산화물 박막이 비정질임을 확인하였고, EC:DMC(1:1 in IM $LiPF_5$)액체전해질을 사용한 반전지 구조에서 그 전기화학적 특성을 고찰하였다. Lipon고체전해질의 이온전도도는 $25^{\circ}C$에서 $1.02\times10^{-6}S/cm$를 나타내었고 전고상 박막전지는 $1.5V\~3.6V$의 전압구간, $50{\mu}A/cm^2$의 전류밀도에서 500싸이클까지 약 $50{\mu}Ah/cm^2{\mu}m$의 방전용량을 유지하였다

PILOT INJECTION OF DME FOR IGNITION OF NATURAL GAS AT DUAL FUEL ENGINE-LIKE CONDITIONS

  • MORSY M. H.;AHN D. H.;CHUNG S. H.
    • International Journal of Automotive Technology
    • /
    • 제7권1호
    • /
    • pp.1-7
    • /
    • 2006
  • The ignition delay of a dual fuel system has been numerically investigated by adopting a constant volume chamber as a model problem simulating diesel engine relevant conditions. A detailed chemical kinetic mechanism, consisting of 28 species and 135 elementary reactions, of dimethyl ether (DME) with methane ($CH_{4}$) sub-mechanism has been used in conjunction with the multi-dimensional reactive flow KIVA-3V code to simulate the autoignition process. The start of ignition was defined as the moment when the maximum temperature in the combustion vessel reached to 1900 K with which a best agreement with existing experiment was achieved. Ignition delays of liquid DME injected into air at various high pressures and temperatures compared well with the existing experimental results in a combustion bomb. When a small quantity of liquid DME was injected into premixtures of $CH_{4}$/air, the ignition delay times of the dual fuel system are longer than that observed with DME only, especially at higher initial temperatures. The variation in the ignition delay between DME only and dual fuel case tend to be constant for lower initial temperatures. It was also found that the predicted values of the ignition delay in dual fuel operation are dependent on the concentration of the gaseous $CH_{4}$ in the chamber charge and less dependent on the injected mass of DME. Temperature and equivalence ratio contours of the combustion process showed that the ignition commonly starts in the boundary at which near stoichiometric mixtures could exists. Parametric studies are also conducted to show the effect of additive such as hydrogen peroxide in the ignition delay. Apart from accurate predictions of ignition delay, the coupling between multi-dimensional flow and multi-step chemistry is essential to reveal detailed features of the ignition process.

12상 다중 GTO 인버터 (12 Phase Multiple GTO Inverter)

  • 오동섭;이규종;성세진;최수현
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1990년도 추계학술대회 논문집 학회본부
    • /
    • pp.291-294
    • /
    • 1990
  • Fuel cell system needs DC-AC conversion inverter system because its output is DC. And the inverter system can be operated not only in stand-alone load but also in interactive mode in interactive mode, it is necessary to control active-reactive power of inverter and to synchronize inverter output voltage to power line voltage. In this paper, a 12 phase multiple VSI type GTO inverter system for fuel cell is described. Synchronization between power line voltage phase and inverter output voltage phase, and reduction of harmonics in the output voltage phase are the purpose of this inverter system. This control algorithm for the system is realized by the software method utilizing 8031AH 8bit Microprocessor.

  • PDF

On-line 발전기 주파수응답시험 개발 및 적용에 관한 연구 (Study on Development & Implementation of Online Generator Frequency Response Test)

  • 오창수;곽월환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 제37회 하계학술대회 논문집 A
    • /
    • pp.48-49
    • /
    • 2006
  • Recently, Importance of Generator's Active/Reactive Power Control Capability is highly emphasized for prevention of Large Blackout. Especially, Generator's frequency Response Capability is important to the Power System Frequency Stability. This paper deals with the Development & Implementation of Each Generator Frequency Response Capability Test via the Injection of Artificial Frequency to the Online Generator. Actual On-line Generator's frequency Response Test was successfully implemented to 13 Generator having various fuel source.

  • PDF

개질기 혼합영역에서 탄화수소 연료의 반응 특성에 대한 연구 (Kinetic Study on the Mixing Region of a Hydrocarbon Reformer)

  • 김선영;배중면
    • 한국수소및신에너지학회논문집
    • /
    • 제22권3호
    • /
    • pp.357-362
    • /
    • 2011
  • Complete mixture preparation of reactants prior to catalytic reforming is an enormously important step for successful operation of a fuel reformer. Incomplete mixing between fuel and reforming agents such as air and steam can cause temperature overshoot and deposit formation which can lead the failure of operation. For that purpose it is required to apply computational models describing coupled kinetics and transport phenomena in the mixing region, which are computationally expensive. Therefore, it is advantageous to analyze the gas-phase reaction kinetics prior to application of the coupled model. This study suggests one of the important design constraints, the required residence time in the mixing chamber to avoid substantial gas-phase reactions which can lead serious deposit formation on the downstream catalyst. The reactivity of various gaseous and liquid fuels were compared, then liquid fuels are far more reactive than gaseous fuels. n-Octane was used as a surrogate among the various hydrocarbons, which is one of the traditional liquid fuel surrogates. The conversion was slighted effected by reactants composition described by O/C and S/C. Finally, threshold residence times in the mixing region of a hydrocarbon reformer were studied and the mixing chamber is required to be designed to make complete mixture of reactants by tens of milliseconds at the temperature lower than $400^{\circ}C$.

가정용 연료전지시스템 계통연계형 전력변환장치의 보호기능 성능평가에 관한 연구 (A Study on the Protective Function Performance Evaluation of Grid-Connected Power Conditioning System for Residential Fuel Cell System)

  • 이정운;서원석;김영규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.341-344
    • /
    • 2009
  • In this paper, protective function evaluation was conducted to determine the performance and safety of a power conditioning system(PCS) for 1kW residential fuel cell system. It is essential to have a power quality, grid-connection and safety of PCS. Even though it is under 500ms by KGS-A410 standard, it is shown a rapid response time of 25ms from input under-voltage test. In terms of output over/under-voltage test, it is shown 29.15 and 79.4ms. Especially using anti-islanding test, it is shown all times under 100ms for combination cases of real and reactive power. We confirmed a rapid response characteristics and safety of PCS. The results of this evaluation are being used to develop a new test protocols of PCS.

  • PDF