• Title/Summary/Keyword: Reactive Cysteine

Search Result 127, Processing Time 0.03 seconds

Transition Metal Induces Apoptosis in MC3T3E1 Osteoblast: Evidence of Free Radical Release

  • Chae, Han-Jung;Chae, Soo-Wan;Kang, Jang-Sook;Yun, Dong-Hyeon;Bang, Byung-Gwan;Kang, Mi-Ra;Kim, Hyung-Min;Kim, Hyung-Ryong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.1
    • /
    • pp.47-54
    • /
    • 2000
  • Transition metal ions including $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ have been thought to disturb the bone metabolism directly. However, the mechanism for the bone lesion is unknown. In this study, we demonstrated that MC3T3E1 osteoblasts, exposed to various transition metal ions; selenium, cadmium, mercury or manganese, generated massive amounts of reactive oxygen species (ROS). The released ROS were completely quenched by free radical scavengers-N-acetyl cysteine (NAC), reduced glutathione (GSH), or superoxide dismutase (SOD). First, we have observed that selenium $(10\;{\mu}M),$ cadmium $(100\;{\mu}M),$ mercury $(100\;{\mu}M)$ or manganese (1 mM) treatment induced apoptotic phenomena like DNA fragmentation, chromatin condensation and caspase-3-like cysteine protease activation in MC3T3E1 osteoblasts. Concomitant treatment of antioxidant; N-acetyl-L-cysteine (NAC), reduced-form glutathione (GSH), or superoxide dismutase (SOD), prevented apoptosis induced by each of the transition metal ions. Catalase or dimethylsulfoxide (DMSO) has less potent inhibitory effect on the apoptosis, compared with NAC, GSH or SOD. In line with the results, nitroblue tetrazolium (NBT) stain shows that each of the transition metals is a potent source of free radicals in MC3T3E1 osteoblast. Our data show that oxidative damage is associated with the induction of apoptosis in MC3T3E1 osteoblasts following $Se^{2+},\;Cd^{2+},\;Hg^{2+}\;or\;Mn^{2+}$ treatment.

  • PDF

Modulation of Cytotoxic Effects of Resveratrol by Its Anti- or Pro-oxidant Properties (Resveratrol의 항산화 및 산화촉진 활성이 세포독성에 미치는 영향)

  • Kim, Da-Ram;Hong, Jung-Il
    • Korean Journal of Food Science and Technology
    • /
    • v.43 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Resveratrol is a polyphenolic compound frequently found in the diet, and its physiological actions have been extensively investigated. In the present study, modulation of the antioxidant and cytotoxic properties of resveratrol at different pHs by various antioxidants were investigated. To measure its antioxidant effects, resveratrol was incubated at different pHs, including 6.5, 7.4, and 8.0. Resveratrol incubated at pH 6.5 showed significantly higher DPPH radical scavenging activity, whereas resveratrol incubated at pH 8.0 did not show antioxidant effects. Resveratrol produced much higher amounts of $H_2O_2$ at pH 8.0 than 7.4. The cytotoxic effects of resveratrol on HeLa cells were significantly enhanced by several antioxidants, including superoxide dismutase, N-acetyl cysteine, glutathione, and ascorbic acid. The present results suggest that resveratrol shows anti- or pro-oxidant effects in different cellular organelles according to the pH conditions, and blocking of reactive oxygen species from resveratrol enhances its cytotoxic effects.

Reactive Oxygen Species (ROS) Generation Contributes to the Synergistic Anticancer Effect of Astragalus Membranaceus and Adenophora Triphylla Var. Japonica in H1299 Human Lung Carcinoma Cells (H1299 인체폐암세포주에서 활성산소종 생성에 의한 황기와 사삼의 항암 시너지 작용)

  • Min, Tae Rin;Park, Hyun Ji;Park, Shin Hyung
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.32 no.3
    • /
    • pp.157-164
    • /
    • 2018
  • This study was designed to investigate the mechanism of the synergistic anticancer effect of Astragalus membranaceus (AM) and Adenophora triphylla var. japonica (AT) in H1299 human lung carcinoma cells. A combined treatment of ethanol extract of AM (EAM) and AT (EAT) explosively increased the reactive oxygen species (ROS) generation in H1299 cells compared to the single treatment of each of them. Co-treatment of N-acetyl-L-cysteine (NAC) with EAM and EAT markedly enhanced the cell viability and suppressed apoptosis in H1299 cells, suggesting that ROS generation contributed to the anticancer effect of EAM and EAT. Interestingly, the combined treatment of EAM and EAT down-regulated p-AKT in H1299 cells, which was abrogated by NAC treatment. These results clearly indicated that ROS generation mediated the inactivation of AKT. Co-treatment of LY294002 with EAM and EAT significantly reduced the cell viability at a concentration which EAM and EAT didn't show any cytotoxicity. In addition, the recovery of cell viability by co-treatment of NAC with EAM and EAT was quite reversed by LY294002 treatment, which confirmed that the inactivation of AKT played a pivotal role in ROS-mediated apoptosis. Taken together, our results demonstrated that the synergistic anticancer effect of EAM and EAT was mediated by ROS generation and inactivation of AKT. We provide a valuable preclinical data for the development of more effective combination of AM and AT to treat lung cancer.

Cigarette Smoke Extract-induced Reduction in Migration and Contraction in Normal Human Bronchial Smooth Muscle Cells

  • Yoon, Chul-Ho;Park, Hye-Jin;Cho, Young-Woo;Kim, Eun-Jin;Lee, Jong-Deog;Kang, Kee-Ryeon;Han, Jae-Hee;Kang, Da-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.6
    • /
    • pp.397-403
    • /
    • 2011
  • The proliferation, migration, cytokine release, and contraction of airway smooth muscle cells are key events in the airway remodeling process that occur in lung disease such as asthma, chronic obstruction pulmonary disease, and cancer. These events can be modulated by a number of factors, including cigarette smoke extract (CSE). CSE-induced alterations in the viability, migration, and contractile abilities of normal human airway cells remain unclear. This study investigated the effect of CSE on cell viability, migration, tumor necrosis factor (TNF)-${\alpha}$ secretion, and contraction in normal human bronchial smooth muscle cells (HBSMCs). Treatment of HBSMCs with 10% CSE induced cell death, and the death was accompanied by the generation of reactive oxygen species (ROS). CSE-induced cell death was reduced by N-acetyl-l-cysteine (NAC), an ROS scavenger. In addition, CSE reduced the migration ability of HBSMCs by 75%. The combination of NAC with CSE blocked the CSE-induced reduction of cell migration. However, CSE had no effect on TNF-${\alpha}$ secretion and NF-${\kappa}B$ activation. CSE induced an increase in intracellular $Ca^{2+}$ concentration in 64% of HBSMCs. CSE reduced the contractile ability of HBSMCs, and the ability was enhanced by NAC treatment. These results demonstrate that CSE treatment induces cell death and reduces migration and contraction by increasing ROS generation in normal HBSMCs. These results suggest that CSE may induce airway change through cell death and reduction in migration and contraction of normal HBSMCs.

Nitric Oxide as a Pro-apoptotic as well as Anti-apoptotic Modulator

  • Choi, Byung-Min;Pae, Hyun-Ock;Jang, Seon-Il;Kim, Young-Myeong;Chung, Hun-Taeg
    • BMB Reports
    • /
    • v.35 no.1
    • /
    • pp.116-126
    • /
    • 2002
  • Nitric oxide (NO), synthesized from L-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO can promote apoptosis (pro-apoptosis) in some cells, whereas it inhibits apoptosis (anti-apoptosis) in other cells. This complexity is a consequence of the rate of NO production and the interaction with biological molecules such as metal ion, thiol, protein tyrosine, and reactive oxygen species. Long-lasting overproduction of NO acts as a pro-apoptotic modulator, activating caspase family proteases through the release of mitochondrial cytochrome c into cytosol, up-regulation of the p53 expression, and alterations in the expression of apoptosis-associated proteins, including the Bcl-2 family. However, low or physiological concentrations of NO prevent cells from apoptosis that is induced by the trophic factor withdrawal, Fas, $TNF{\alpha}$/ActD, and LPS. The anti-apoptotic mechanism is understood on the basis of gene transcription of protective proteins. These include: heat shock protein, hemeoxygenase, or cyclooxygenase-2 and direct inhibition of the apoptotic executive effectors caspase family protease by S-nitrosylation of the cysteine thiol group in their catalytic site in a cell specific way. Our current understanding of the mechanisms by which NO exerts both pro- and anti-apototic action is discussed in this review article.

Methanol Extract of Flacourtia indica Aerial Parts Induces Apoptosis via Generation of ROS and Activation of Caspases in Human Colon Cancer HCT116 Cells

  • Park, Ki-Woong;Kundu, Juthika;Chae, In Gyeong;Bachar, Sitesh Chandra;Bae, Jung-Woo;Chun, Kyung-Soo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7291-7296
    • /
    • 2014
  • Different plant parts of Flacourtia indica have long been used in Ayurvedic medicine. Previous studies have demonstrated that the methanolic extract of F. indica possess anti-inflammatory properties. The present study was aimed at investigating the anticancer effects of methanol extract of Flacourtia indica (FIM) aerial parts in human colon cancer (HCT116) cells. Treatment of cells with FIM at a concentration of $500{\mu}g/ml$ for 24 hours significantly reduced cell viability and induced apoptosis, which was associated with the increased cytoplasmic expression of cytochrome c, activation of caspase-3, and the cleavage of poly-(ADP-ribose) polymerase. Incubation with FIM also inhibited the levels of Bcl-2, Bcl-xl and survivin, which are the markers of cell proliferation, whereas the expression of Bax remained unchanged. Treatment with FIM led to the generation of reactive oxygen species (ROS) in a concentration-dependent manner. Pharmacological inhibition of ROS generation by pretreatment of cells with N-acetyl cysteine abrogated FIM-induced apoptosis in HCT116 cells. Thus, these results demonstrate that FIM has anti-proliferative and pro-apoptotic effects in HCT116 cells and the effects are, at least in part, due to the ROS dependent activation of caspases.

Effect of sulfur on the cadmium transfer and ROS-scavenging capacity of rice (Oryza sativa L.) seedlings

  • Jung, Ha-il;Chae, Mi-Jin;Kong, Myung-Suk;Kang, Seong-Soo;Kim, Yoo-Hak
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.187-187
    • /
    • 2017
  • Cadmium (Cd) pollution is rapidly increasing in worldwide due to industrialization and urbanization. In addition to its negative effects on the environment, Cd pollution adversely affects human health. Rice (Oryza sativa L.) is an important agricultural crop worldwide, including South Korea, and studies have examined its ability to alleviate Cd uptake from the soil into plants. However, information about the relationship between sulfur (S) and antioxidants in rice seedlings is still limited with regard to Cd phytotoxicity. We therefore investigated the changes in reactive oxygen species (ROS) and antioxidants in rice (Oryza sativa L. 'Dongjin') seedlings exposed to toxic Cd, S treatment, or both. The exposure of rice seedlings to $30{\mu}M$ Cd inhibited plant growth; increased the contents of superoxide, hydrogen peroxide, and malondialdehyde (MDA); and induced Cd uptake by the roots, stems, and leaves. Application of S to Cd-stressed seedlings decreased Cd-induced oxidative stress by increasing the capacity of the glutathione (GSH)-ascorbate (AsA) cycle, promoted S assimilation by increasing cysteine, GSH, and AsA contents in treated plants, and decreased Cd transfer from the roots to the stems and leaves. In conclusion, S application of plants under Cd stress promoted Cys and GSH biosynthesis and GSH-AsA cycle activity, thereby lowering the rate of Cd transfer to plant shoots and promoting the scavenging of the ROS that resulted from Cd toxicity, thus alleviating the overall Cd toxicity. Therefore, these results provide insights into the role of S in regulating the tolerance, uptake, and translocation of Cd in rice seedlings. The results of this study indicate that S application should have potential as a tool for mitigating Cd-stress in cereal crops, especially rice.

  • PDF

Condurango (Gonolobus condurango) Extract Activates Fas Receptor and Depolarizes Mitochondrial Membrane Potential to Induce ROS-dependent Apoptosis in Cancer Cells in vitro -CE-treatment on HeLa: a ROS-dependent mechanism-

  • Bishayee, Kausik;Mondal, Jesmin;Sikdar, Sourav;Khuda-Bukhsh, Anisur Rahman
    • Journal of Pharmacopuncture
    • /
    • v.18 no.3
    • /
    • pp.32-41
    • /
    • 2015
  • Objectives: Condurango (Gonolobus condurango) extract is used by complementary and alternative medicine (CAM) practitioners as a traditional medicine, including homeopathy, mainly for the treatment of syphilis. Condurango bark extract is also known to reduce tumor volume, but the underlying molecular mechanisms still remain unclear. Methods: Using a cervical cancer cell line (HeLa) as our model, the molecular events behind condurango extract's (CE's) anticancer effect were investigated by using flow cytometry, immunoblotting and reverse transcriptase-polymerase chain reaction (RT-PCR). Other included cell types were prostate cancer cells (PC3), transformed liver cells (WRL-68), and peripheral blood mononuclear cells (PBMCs). Results: Condurango extract (CE) was found to be cytotoxic against target cells, and this was significantly deactivated in the presence of N-acetyl cysteine (NAC), a scavenger of reactive oxygen species (ROS), suggesting that its action could be mediated through ROS generation. CE caused an increase in the HeLa cell population containing deoxyribonucleic acid (DNA) damage at the G zero/Growth 1 (G0/G1) stage. Further, CE increased the tumor necrosis factor alpha ($TNF-{\alpha}$) and the fas receptor (FasR) levels both at the ribonucleic acid (RNA) and the protein levels, indicating that CE might have a cytotoxic mechanism of action. CE also triggered a sharp decrease in the expression of nuclear factor kappa-light-chain-enhancer of activated B cells ($NF-{\kappa}B$) both at the RNA and the protein levels, a possible route to attenuation of B-cell lymphoma 2 (Bcl-2), and caused an opening of the mitochondrial membrane's permeability transition (MPT) pores, thus enhancing caspase activities. Conclusion: Overall, our results suggest possible pathways for CE mediated cytotoxicity in model cancer cells.

Streptochlorin Isolated from Streptomyces sp. Induces Apoptosis in Human Hepatocarcinoma Cells Through a Reactive Oxygen Species-Mediated Mitochondrial Pathway

  • Shin, Dong-Yeok;Shin, Hee-Jae;Kim, Gi-Young;Cheong, Jae-Hun;Choi, Il-Whan;Kim, Se-Kwon;Moon, Sung-Kwon;Kang, Ho-Sung;Choi, Yung-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.11
    • /
    • pp.1862-1867
    • /
    • 2008
  • Streptochlorin is a small molecule isolated from marine Streptomyces sp. that is known to have antiangiogenic and anticancer properties. In this study, we examined the effects of this compound on reactive oxygen species (ROS) production and the association of these effects with apoptotic tumor cell death, using a human hepatocarcinoma Hep3B cell line. The results of this study demonstrated that streptochlorin mediates ROS production, and that this mediation is followed by a decrease in the mitochondrial membrane potential (MMP, ${\Delta}{\Psi}_m$), activation of caspase-3, and downregulation of antiapoptotic Bcl-2 protein. The quenching of ROS generation by N-acetyl-L-cysteine administration, a scavenger of ROS, reversed the streptochlorin-induced apoptosis effects via inhibition of ROS production, MMP collapse, and the subsequent activation of caspase-3. These observations clearly indicate that ROS are involved in the early molecular events in the streptochlorin-induced apoptotic pathway. Taken together, our data imply that streptochlorin-induced ROS is a key mediator of MMP collapse, which leads to the caspase-3 activation, culminating in apoptosis.

Water Extract of Allium sativum L. Induces Apoptosis in Human Leukemia U937 Cells through Reactive Oxygen Species Generation (마늘 열수 추출물의 활성산소중 생성을 통한 인체백혈병세포의 apoptosis 유발)

  • Choi, Yung-Hyun
    • Food preservation and processing industry
    • /
    • v.7 no.1
    • /
    • pp.9-18
    • /
    • 2008
  • The health benefits of garlic (Allium sativum L.) are derived from a wide variety of components and from the different ways it is administered. The known health benefits of garlic include cardiovascular protective effects, stimulation of immune function, reduction of blood glucose level, protection against microbial, viral and fungal infections, as well as anticancer effects. In the present study, it was examined the effects of water extract of A. sativum (WEAS) on the growth of cultured human tumor cells in order to investigate its anti-proliferative mechanism. Treatment of WEAS to tumor cells resulted in the growth inhibition, especially in leukemia cells, which was associated with induction of G2/M arrest of the cell cycle and apoptosis. In order to further explore the critical events leading to apoptosis in WEAS-treated U937 human leukemia cells, the following effects of WEAS on components of the mitochondrial apoptotic pathway were examined: generation of reactive oxygen species (ROS), alteration of the mitochondrial membrane potential (MMP), and the expression changes of Bcl-2 and IAP family proteins. The cytotoxic effect of WEAS was mediated by its induction of apoptosis as characterized by the occurrence of DNA ladders, apoptotic bodies and chromosome condensation in U937 cells. The WEAS-induced apoptosis in U937 cells was correlated with the generation of intracellular ROS, collapse of MMP, activation of caspase-3 and down-regulation of anti-apoptotic proteins. The quenching of ROS generation with antioxidant N-acetyl-L-cysteine conferred significant protection against WEAS-elicited ROS generation, caspase-3 activation, G2/M arrest and apoptosis. In conclusion, the present study reveals that the cellular ROS generation plays a pivotal role in the initiation of WEAS-triggered apoptotic death in U937 cells.

  • PDF