• Title/Summary/Keyword: Reaction-torque

Search Result 169, Processing Time 0.028 seconds

Dynamic Control Allocation for Shaping Spacecraft Attitude Control Command

  • Choi, Yoon-Hyuk;Bang, Hyo-Choong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.8 no.1
    • /
    • pp.10-20
    • /
    • 2007
  • For spacecraft attitude control, reaction wheel (RW) steering laws with more than three wheels for three-axis attitude control can be derived by using a control allocation (CA) approach.1-2 The CA technique deals with a problem of distributing a given control demand to available sets of actuators.3-4 There are many references for CA with applications to aerospace systems. For spacecraft, the control torque command for three body-fixed reference frames can be constructed by a combination of multiple wheels, usually four-wheel pyramid sets. Multi-wheel configurations can be exploited to satisfy a body-axis control torque requirement while satisfying objectives such as minimum control energy.1-2 In general, the reaction wheel steering laws determine required torque command for each wheel in the form of matrix pseudo-inverse. In general, the attitude control command is generated in the form of a feedback control. The spacecraft body angular rate measured by gyros is used to estimate angular displacement also.⁵ Combination of the body angular rate and attitude parameters such as quaternion and MRPs(Modified Rodrigues Parameters) is typically used in synthesizing the control command which should be produced by RWs.¹ The attitude sensor signals are usually corrupted by noise; gyros tend to contain errors such as drift and random noise. The attitude determination system can estimate such errors, and provide best true signals for feedback control.⁶ Even if the attitude determination system, for instance, sophisticated algorithm such as the EKF(Extended Kalman Filter) algorithm⁶, can eliminate the errors efficiently, it is quite probable that the control command still contains noise sources. The noise and/or other high frequency components in the control command would cause the wheel speed to change in an undesirable manner. The closed-loop system, governed by the feedback control law, is also directly affected by the noise due to imperfect sensor characteristics. The noise components in the sensor signal should be mitigated so that the control command is isolated from the noise effect. This can be done by adding a filter to the sensor output or preventing rapid change in the control command. Dynamic control allocation(DCA), recently studied by Härkegård, is to distribute the control command in the sense of dynamics⁴: the allocation is made over a certain time interval, not a fixed time instant. The dynamic behavior of the control command is taken into account in the course of distributing the control command. Not only the control command requirement, but also variation of the control command over a sampling interval is included in the performance criterion to be optimized. The result is a control command in the form of a finite difference equation over the given time interval.⁴ It results in a filter dynamics by taking the previous control command into account for the synthesis of current control command. Stability of the proposed dynamic control allocation (CA) approach was proved to ensure the control command is bounded at the steady-state. In this study, we extended the results presented in Ref. 4 by adding a two-step dynamic CA term in deriving the control allocation law. Also, the strict equality constraint, between the virtual and actual control inputs, is relaxed in order to construct control command with a smooth profile. The proposed DCA technique is applied to a spacecraft attitude control problem. The sensor noise and/or irregular signals, which are existent in most of spacecraft attitude sensors, can be handled effectively by the proposed approach.

The Biomechanical Analysis of Various Vertical Jumps According to Gender of High School Students (고등학생의 성별에 따른 수직점프 유형별 운동역학적 분석)

  • Lee, Haeng-Seob;Ju, Myung-Duck
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.4
    • /
    • pp.153-164
    • /
    • 2006
  • This thesis is focused on kinematical and kinematical analysis of each types(Type #1 : use both swing of arm and reaction of knee, Type #2 : Use only swing of arm, not reaction of knee, type #3 : Neither use of swing of arm nor reaction of knee) of vertical jumps according to gender of High School Students. The subjects of this study is High School Student's male and female, 5 each, for analyzation of actions 3D image analyzing and GRF machines were used. To identify the differences of analyzed variables, an independent T-test on gender, an One-way ANOVA on types were used. Summery of the results are stated below. first of all, female students showed differences on Hip Joint angle and Joint Velocity from male students on Kimentic Variable. So training on hip joint force of flection and extension of female students is needed. Both male and female students showed relatively bigger result of arm's Angular Momentum than thigh's Angular Momentum on Type #1. This is regarded of faster Joint Velocity of Arm. Bigger result of female students of arm's contribution on Type #1 than male students can be said as Female student's weaker hip joint's angular muscle force than male student's, so the dependency of arm is heavier than male students. In Kinetic variable, GRF showed bigger result on male students than female students. So female students need to enhance joint's torque to increase GRF than male students. On vertical Impulse, high numeric data of last two reaction of tiptoe of vertical GRF and antero-posterior GRF helped increasing impulse by extending action time of force.

Characteristics of Brazed Joint of Sintered Bronze/steel Using Ag-Cu-Zn Type Filler Materials (Ag-Cu-Zn-Cd 계 용가재를 이용한 Bronze 소결체/강의 브레이징 접합부 특성 평가)

  • 이정훈;이창희
    • Journal of Welding and Joining
    • /
    • v.17 no.3
    • /
    • pp.79-89
    • /
    • 1999
  • The study was carried out to examine in more detail metallurgical and mechanical properties of brazed joints of diamond cutting wheel. In this work, shank(mild steel) and sintered bronze-base tips were brazed with three different filler materials(W-40, BAgl and BAg3S). The machine used in this work was a high frequency induction brazing equipment. The joint thickness, porosities and microstructure of brazed joints with brazing variables(brazing temperature, holding time) were evaluated with OLM, SEM, EDS and XRD. Bending(torque) test was also performed to evaluate strength of brazed joints. Further wetting test was performed in a vacuum furnace in order to evaluate the wettability of filler metals on base metals9shank and tips). The brazing temperature had a strong influence on the joint strength and the optimum brazing temperature range was about $700~850^{\circ}C$ for the bronze/steel combinations. The strength of the brazed joint was found to be influenced by the three factors : degree of reaction region, porosity content, joint thickness. The reaction region was formed in the bronze-base tip adjacent to the joint. The reaction region resulted in a bad influence on the strength due to the formation of Cu5.6Sn, CuZn4, $\beta(CuZn)$ and CdAg, etc. Porosities increased as brazing variables(brazing temperature, holding time) increased, and the brazed joints with porosities of less than about 3-5% had an optimum strength for the bronze-base tip.

  • PDF

A Study on the PP/PS Blends with Nylon 6 Reactive Compatibilizers (Nylon6계 반응 상용화제에 의한 PP/PS 블렌드에 관한 연구)

  • 서성식;이기윤;김성희;김동철;이승구
    • Polymer(Korea)
    • /
    • v.26 no.1
    • /
    • pp.71-79
    • /
    • 2002
  • RPP(maleic-anhydride grafted PP)and OPS(oxazoline grafted PS) do not react to each other, and thus show immiscibility. In this study, Nylons was added to RPP/OPS blend systems, as a reactive compatibilizer for enhancing the miscibility of the blends. When Nylon6 was added to the blends of RPP and OPS, RPP/Nylon6/OPS was produced. The effects of the molar ratio of Nylon6 on the RPP-Nylon6-OPS reaction were studied. Torque test and FT-IR analysis have been carried out to investigate the reaction of RPP/Nylon6/OPS system. The reaction torgue ratio and reaction efficiency show the maximum values at 1 : 0.66 : 1 and 1 : 1 : 1 (in moles) for RPP/Nylon6/OPS. In the RPP/Nylon6/OPS blends, their mechanical properties were changed with the molar ratio of Nylon6 and showed the highest value at molar ratio of 1.5. Physical properties and compatibility of RPP/Nylon6/OPS were compared with those of PP/Nylon6/OPS. Consequently, RPP/Nylon6/OPS plays a proper role as a reactive compatibilizer to the PP/PS blend system.

Inertial Motion Sensing-Based Estimation of Ground Reaction Forces during Squat Motion (관성 모션 센싱을 이용한 스쿼트 동작에서의 지면 반력 추정)

  • Min, Seojung;Kim, Jung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.4
    • /
    • pp.377-386
    • /
    • 2015
  • Joint force/torque estimation by inverse dynamics is a traditional tool in biomechanical studies. Conventionally for this, kinematic data of human body is obtained by motion capture cameras, of which the bulkiness and occlusion problem make it hard to capture a broad range of movement. As an alternative, inertial motion sensing using cheap and small inertial sensors has been studied recently. In this research, the performance of inertial motion sensing especially to calculate inverse dynamics is studied. Kinematic data from inertial motion sensors is used to calculate ground reaction force (GRF), which is compared to the force plate readings (ground truth) and additionally to the estimation result from optical method. The GRF estimation result showed high correlation and low normalized RMSE(R=0.93, normalized RMSE<0.02 of body weight), which performed even better than conventional optical method. This result guarantees enough accuracy of inertial motion sensing to be used in inverse dynamics analysis.

Study for the Indirect Measuring Method of Operational Force in Surgical Robot Instrument (복강경 수술용 로봇 인스트루먼트의 간접적 작동력 측정법에 관한 연구)

  • Kim, Chi-Yen;Lee, Min-Cheol;Lee, Tae-Kyung;Choi, Seung-Wook;Park, Min-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.840-845
    • /
    • 2010
  • This paper proposes the method indirectly measuring the operating force of the end-effect tip of surgical robot instrument which conducts the surgical operation in the body on behalf of the surgeon's hand. Due to the size and safety obligation to the surgical robot instrument, it is difficult to measure the operation force of its tip like grasping force. However the instrument is driven by cable-pulley torque transmission mechanism and when some force is occurred at the tip, then the reaction force appears on the cable as additional tension. Based on this phenomenon, this paper proposes a method to estimate the operating force from measuring reaction force against the driving motor by using a loadcell. And it induces mathematical equation to calculate the force from loadcell by approaching the modulus of elasticity to high order polynomial. And this paper proves the validity of proposed mechanism by experimental test.

Impedance Model based Bilateral Control for Force reflection of a Laparoscopic Surgery Robot (복강경 수술 로봇의 힘 반향을 위한 임피던스 모델 기반의 양방향 제어)

  • Yoon, Sung-Min;Kim, Won-Jae;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.801-806
    • /
    • 2014
  • LAS (Laparoscopy Assisted Surgery) has been substituted alternatively for traditional open surgery. However, when using a commercialized robot assisted laparoscopic such as Da Vinci, surgeons have encountered some problems due to having to depend only on information by visual feedback. To solve this problem, a haptic function is required. In order to realize the haptic teleoperation system, a force feedback and bilateral control system are needed. Previous research showed that the perturbation value estimated by a SPO (Sliding Perturbation Observer) followed a reaction force that loaded on the surgical robot instrument. Thus, in this paper, the force feedback problem of surgical robots is solved through the reaction force estimation method. This paper then introduces the possibility of the haptic function realization of a laparoscopic surgery robot using a bilateral control system. For bilateral control, the master uses an impedance control and the slave uses a SMC (Sliding Mode Control). The experiment results show that a torque and force sensorless teleoperation system can be implemented using a bilateral control structure.

Relationship between Magnetic Torquer Arrangement and Reaction Wheel Momentum Dumping Performance (자기토커 배치와 반작용휠 모멘텀 덤핑 성능 관계)

  • Son, Jun-Won
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.9
    • /
    • pp.760-766
    • /
    • 2018
  • Due to external disturbances on the satellite, unwanted momentum is accumulated on reaction wheels. To remove this momentum, three magnetic torquers which are installed along the satellite's axes are used. The magnetic torquers generated torque indirectly by interactions with the earth's magnetic field. Thus, during momentum dumping, we should consider both the magnetic torquer and the earth's magnetic field generated on the magnetic torquers at the same time. When low earth orbit satellite with high inclination angle holds nadir pointing attitude, weak earth's magnetic field is generated along the satellite's pitch axis. In this case, one magnetic torquer is overloaded and momentum dumping performance is degraded. This research will review the method to improve the momentum dumping performance by adjusting magnetic torquers arrangement.

Effects of Kinematics and Kinetics of the Lower Extremities Joint during Drop Landing in Adult Women with Patellofemoral Pain Syndrome (슬개대퇴동통증후가 성인 여성의 드롭랜딩 시 하지 주요관절의 운동역학적 변화에 미치는 영향)

  • Jeon, Kyoungkyu;Yeom, Seunghyeok
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.1
    • /
    • pp.64-71
    • /
    • 2021
  • Objective: This study investigated the different in isokinetic peak strength of the knee joint, and kinetics and kinematics in drop landing pattern of lower limb between the patellofemoral pain syndrome (PFPS) patients and normal. Method: 30 adult females were divided into the PFPS (age: 23.13±2.77 yrs; height: 160.97±3.79 cm, weight: 51.19±4.86 kg) and normal group (age: 22.80±2.54 yrs, height: 164.40±5.77 cm, weight: 56.14±8.16 kg), with 15 subjects in each group. To examine the knee isokinetic peak strength, kinematics and kinetics in peak vertical ground reaction force during drop landing. Results: The knee peak torque (Nm) and relative strength (%) were significantly weaker PFPS group than normal group. In addition, PFPS group had significantly greater hip flexion angle (°) than normal group. Moreover, normal group had significantly greater moment of hip abduction, hip internal rotation, and left ankle eversion than PFPS group, and PFPS group had significantly greater moment of knee internal rotation. Finally, there was significant differences between the groups at anteroposterior center of pressure. Conclusion: The PFPS patients had weakened knee strength, and which can result in an unstable landing pattern and cause of more stress in the knee joints despite to effort of reduce vertical ground reaction force.

The Effects of Strengthening Exercise for the Lower Extremities on Associated Reaction of the Upper Extremities in Patients With Hemiparesis (뇌졸중 편마비 환자에서 하지 근력강화운동이 상지 연합반응에 미치는 영향)

  • Park, Hyung-Ki;Kim, Jong-Man;Kim, Won-Ho
    • Physical Therapy Korea
    • /
    • v.13 no.2
    • /
    • pp.52-60
    • /
    • 2006
  • Muscle weakness in the hemiplegia following stroke is an important factor which determines the quality of life in the future. Therefore, muscle strengthening exercise is essential for functional recovery in hemiplegic patients. Even though the popular conception is that muscle strengthening exercise causes spasticity and associated reaction that hemiplegia patients don't want, and that it disturbs functional recovery, recently there have been many new reports against that opinion. Therefore, the effects of strengthening exercise programs on functional recovery in hemiplegic patients are still controversial. The purpose of this study was to determine the effects of strengthening exercise programs for the knee joint using isokinetic exercise on the associated reaction of the upper extremities. Comparing the muscle activities of biceps brachii and triceps brachii during, before, and immediately after 2 and 5 minute intervals of isokinetic exercise, we examined the increase and decrease of associated reaction. Twenty stroke inpatients participated in this study. Surface electromyography was used to get muscle activity data from biceps brachii and triceps brachii. The major findings of this study were as follows: 1. The flexor and extensor peak torque were significantly higher on the sound side than the affected side (p<.05). 2. Before and after strengthening exercise, there was no significant difference in muscle activities (surface electromyographic root mean square values) between the sound and affected side. 3. Muscle activities were examined during, before, and immediately after 2 and 5 minute intervals of isokinetic exercise. There were significant differences in muscle activities between, before and during the exercises, during exercise and 5 minutes after exercise in the biceps brachii (p<.05), and during exercise and 5 minutes after exercise in the triceps brachii (p<.05). In conclusion, there was no relation between strengthening exercise and associated reaction in the upper extremities. Rather, muscle activities after exercise had a tendency to decrease relative to before the exercise. Thus, it is considered that intensive strengthening exercise contributes to improvement of functional recovery without increase in associated reaction in hemiparetic patients.

  • PDF