• 제목/요약/키워드: Reaction-bonded $Si_3N_4$

검색결과 26건 처리시간 0.02초

규소 고분자 복합체를 이용한 반응소결 질화규소 (Reaction Bonded Si3N4 from Si-Polysilazane Mixture)

  • 홍성진;안효창;김득중
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.572-577
    • /
    • 2010
  • Reaction-bonded $Si_3N_4$ has cost-reduction merit because inexpensive silicon powder was used as a start material. But its density was not so high enough to be used for structural materials. So the sintered reaction-bonded $Si_3N_4$techniques were developed to solve the low density problem. In this study the sintered reaction-bonded $Si_3N_4$ manufacturing method by using polymer precursor which recently attained significant interest owing to the good shaping and processing ability was proposed. The formations, properties of reaction-bonded $Si_3N_4$ from silicon and polysilazane mixture were investigated. High density reaction-bonded $Si_3N_4$ was manufactured from silicon and silicon-containing preceramic polymers and post-sintering technique. The mixtures of silicon powder and polysilazane were prepared and reaction sintered in $N_2$ atmosphere at $1350^{\circ}C$ and post-sintered at 1600~$1950^{\circ}C$. Density and phase were analyzed and correlated to the resulting material properties.

반응결합 질화수소의 소결시 규소의 거동에 관한 연구 (The behavior of Si During Sintering of Reaction Bonded Silicon Nitride)

  • 김재룡;김종희
    • 한국세라믹학회지
    • /
    • 제23권5호
    • /
    • pp.67-74
    • /
    • 1986
  • To investigate the effects of unreacted silicon on the $\alpha$/$\beta$transfornation variation of morphology and mechanical strength of Sintered Reaction Bonded Silicon Nitride the mixtures of $\alpha$-$Si_3N_4$ and Si powder and Reaction Bonded Silicon Nitride were heat treated. The heat-treatments were performed in Ar atmosphere in order to inhibit the nitridation of silicon. In the mixtures heat-trated at 1$700^{\circ}C$ the amount of $\beta$-TEX>$Si_3N_4$transformed from $\alpha$-TEX>$Si_3N_4$was sigmoidally increased and the equiaxed $\alpha$-TEX>$Si_3N_4$grains elongated with the amount of silicon and heat treating time. And large $\beta$-TEX>$Si_3N_4$grains grown into silicon were observed. On the other hand there was no change in the heat-treatment of pure $\alpha$-TEX>$Si_3N_4$In case of the heat-treatment of RBSN the same phenomena due to the silicon appearing from the decomposition of $\alpha$-Smatte and needle were observed. From the three point bending test the strength of the sintered specimens with the and without 5wt% silicon addition had 53Kg/$mm^2$ and 73Kg/$mm^2$ respectively.

  • PDF

Effects of Debinding Atmosphere on Properties of Sintered Reaction-bonded Si3N4 Prepared by Tape Casting Method

  • Park, Ji-Sook;Lee, Sung-Min;Han, Yoon-Soo;Hwang, Hae-Jin;Ryu, Sung-Soo
    • 한국세라믹학회지
    • /
    • 제53권6호
    • /
    • pp.622-627
    • /
    • 2016
  • The effects of the debinding atmosphere on the properties of sintered reaction-bonded $Si_3N_4$ (SRBSN) ceramics prepared by tape casting method were investigated. Si green tape was produced from Si slurry of Si powder, using 11.5 wt% polyvinyl butyral as the organic binder and 35 wt% dioctyl phthalate as the plasticizer. The debinding process was conducted in air and $N_2$ atmospheres at $400^{\circ}C$ for 4 h. The nitridation process of the debinded Si specimens was performed at $1450^{\circ}C$, followed by sintering at $1850^{\circ}C$ and 20 MPa. The results revealed that the debinding atmosphere had a significant effect on $Si_3N_4$ densification and thermal conductivity. Owing to the higher sintered density and larger grain size, the thermal conductivity of $Si_3N_4$ specimens debinded in air was higher than that of the samples debinded in $N_2$. Thus, debinding in air could be suitable for the manufacture of high-performance SRBSN substrates by tape casting.

질화규소에 의한 SiC 소결체의 제조에 관한 연구 (Febrication of $Si_3-N_4$ Bonded SiC Ceramics)

  • 정주희;김종희
    • 한국세라믹학회지
    • /
    • 제20권1호
    • /
    • pp.63-69
    • /
    • 1983
  • It is know that $Si_3-N_4$ bonded SiC has almost all the valuable properties needed for the high temperature material and thus has bery wide range of applicability. Si powder and two different sized SiC powder were used as the raw mateials. Specimens were prepared by heating the green compact mode of the raw materials with polyvinyl alcohol binder in the nitrogen atmosphere. The bond-ing of SiC particles is brought about with the formation of reaction bonded silicon nitride phase between the particles he influences of the variation of the relative amounts of the raw materials and the amount of the organic binder on the density and the bend strength of the specimens were investigated. It was shown that the calculation of the amount of the nitridation of Si is somewhat complicated matter since some portion of the organic binder reacts with the Si during the firing process. Fixing the Si amount to 20w/o the distributions of the size of the SiC particles that gives the maximum density and the maximum strnegth were obtained through experiments. It was observed that the two distributions were not equal to each other. As the amount of Si increased the amount of Si reacted with nitrogen and the strength increased. The fracture mode was intergranular for the most part and the transgranular fracture was scarcely observed.

  • PDF

$Si-Si_3N_4$ 성형체의 질화반응에 관한연구 (A Study on the Nitridation of $Si-Si_3N_4$ Compacts)

  • 이전국;김종희
    • 한국세라믹학회지
    • /
    • 제22권1호
    • /
    • pp.53-59
    • /
    • 1985
  • Experiments related to nitriding silicon with addition of $Si_3N_4$ have provided information on the effects of such inclusion on the phase relationships of Reaction Bonded Silicon Nitride. In the current work specimens containing 0-25wt% Si3N4 which have 55.5wt% $\alpha$ 4.5wt% $eta$, 40wt% amorphous phase were nitrided for 7-20 hours at 1300-135$0^{\circ}C$ The evaluation of nitridation was per-formed by means of $\alpha$-and $\beta$-phase contents determination in nitrided specimens, In order to observe nitrided region between silicon and silicon nitride scanning electron microscopy was used to study reacted region between silicon and silicon nitride particle. For this purpose semiconductor-grade silicon wafer single crystal was used as a silicon source. The incorporation of small amount of $Si_3N_4$ powder is contributed to enhancing the rate of formation of $\alpha$-phase.

  • PDF

The Effect of Si3N4 Addition on Nitriding and Post-Sintering Behavior of Silicon Powder Mixtures

  • Park, Young-Jo;Ko, Jae-Woong;Lee, Jae-Wook;Kim, Hai-Doo
    • 한국세라믹학회지
    • /
    • 제49권4호
    • /
    • pp.363-368
    • /
    • 2012
  • Nitriding and post-sintering behavior of powder mixture compacts were investigated. As mixture compacts are different from simple Si compacts, the fabrication of a sintered body with a mixture composition has engineering implications. In this research, in specimens without a pore former, the extent of nitridation increased with $Si_3N_4$ content, while the highest extent of nitridation was measured in $Si_3N_4$-free composition when a pore former was added. Large pores made from the thermal decomposition of the pore former collapsed, and they were filled with a reaction product, reaction-bonded silicon nitride (RBSN) in the $Si_3N_4$-free specimen. On the other hand, pores from the decomposed pore former were retained in the $Si_3N_4$-added specimen. Introduction of small $Si_3N_4$ particles ($d_{50}=0.3{\mu}m$) into a powder compact consisting of large silicon particles ($d_{50}=7{\mu}m$) promoted close packing in the green body compact, and resulted in a stable strut structure after decomposition of the pore former. The local packing density of the strut structure depends on silicon to $Si_3N_4$ size ratio and affected both nitriding reaction kinetics and microstructure in the post-sintered body.

S${i_3}{N_4}$-BN복합재료의 제조 및 열적 특성 (Processing and Thermal Properties of S${i_3}{N_4}$-BN Composites)

  • 이오상;박희동;이재도
    • 한국재료학회지
    • /
    • 제3권4호
    • /
    • pp.381-387
    • /
    • 1993
  • ${Si_3}{N_4}$와 BN의 선택적 산화반응과 질소분위기 소결에 의하여 $Si_2N_2O$로 결합된$Si_3N_4-BN$복합재료를 개발하였으며, 이때 산화반응 온도와 CaO의 첨가가 $Si_2N_2O$의 생성에 미치는 영향을 고찰하였다. $Si_2N_2O$상이 도입된 $Si_3N_4-BN$복합재료는 내열충격성 및 용강에 대한 내침식성이 우수하여 연속제강새안의 부품인 break ring등의 소재로 사용될 수 있다.

  • PDF