• Title/Summary/Keyword: Reaction monitoring

Search Result 585, Processing Time 0.031 seconds

Sensitivity Enhancement of RF Plasma Etch Endpoint Detection With K-means Cluster Analysis

  • Lee, Honyoung;Jang, Haegyu;Lee, Hak-Seung;Chae, Heeyeop
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.142.2-142.2
    • /
    • 2015
  • Plasma etch endpoint detection (EPD) of SiO2 and PR layer is demonstrated by plasma impedance monitoring in this work. Plasma etching process is the core process for making fine pattern devices in semiconductor fabrication, and the etching endpoint detection is one of the essential FDC (Fault Detection and Classification) for yield management and mass production. In general, Optical emission spectrocopy (OES) has been used to detect endpoint because OES can be a simple, non-invasive and real-time plasma monitoring tool. In OES, the trend of a few sensitive wavelengths is traced. However, in case of small-open area etch endpoint detection (ex. contact etch), it is at the boundary of the detection limit because of weak signal intensities of reaction reactants and products. Furthemore, the various materials covering the wafer such as photoresist (PR), dielectric materials, and metals make the analysis of OES signals complicated. In this study, full spectra of optical emission signals were collected and the data were analyzed by a data-mining approach, modified K-means cluster analysis. The K-means cluster analysis is modified suitably to analyze a thousand of wavelength variables from OES. This technique can improve the sensitivity of EPD for small area oxide layer etching processes: about 1.0 % oxide area. This technique is expected to be applied to various plasma monitoring applications including fault detections as well as EPD.

  • PDF

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

Evaluation of Simple CO2 Budget with Environmental Monitoring at an Oyster Crassostrea gigas Farm in Goseong Bay, South Coast of Korea in November 2011 (2011년 11월 고성만 굴(Crassostrea gigas) 양식장 수질환경 모니터링을 통한 이산화탄소 수지 평가)

  • Shim, JeongHee;Ye, Miju;Lim, Jae-Hyun;Kwon, Jung-No
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.6
    • /
    • pp.1026-1036
    • /
    • 2014
  • Real-time monitoring for environmental factors (temperature, salinity, chlorophyll-a, etc.) and fugacity of carbon dioxide ($fCO_2$) was conducted at an oyster Crassostrea gigas farm in Goseong Bay, south coast of Korea during 2-4th of November, 2011. Surface temperature and salinity were ranged from $17.9-18.7^{\circ}C$ and 32.7-33.8, respectively, with daily and inter-daily variations due to tidal currents. Surface $fCO_2$ showed a range of $390-510{\mu}atm$ and was higher than air $CO_2$ during the study period. Surface temperature, salinity and $fCO_2$ are showed significant correlations with chl.-a and nutrients, respectively. It means when chl.-a value is high in surface water of the oyster farm, active biological production consume $CO_2$ and nutrients from environments and produce oxygen, suggesting a tight feedback between biological processes and environmental reaction. Thus, factors affecting the surface $fCO_2$ were evaluated using a simple mass balance. Temperature and biological productions by phytoplankton are the main factors for $CO_2$ drawdown from afternoon to early night, while biological respiration increases seawater $CO_2$ at night. Air-sea exchange fraction acts as a $CO_2$ decreasing gear during the study period and is much effective when the wind speed is higher than $2-3m\;s^{-1}$. Future studies about organic carbon and biological production/respiration are required for evaluating the roles of oyster farms on carbon sink and coastal carbon cycle.

Real Time Endpoint Detection in Plasma Etching Using Decision Making Algorithm (플라즈마 식각 공정에서 의사결정 알고리즘을 이용한 실시간 식각 종료점 검출)

  • Noh, Ho-Taek;Park, Young-Kook;Han, Seung-Soo
    • Journal of IKEEE
    • /
    • v.20 no.1
    • /
    • pp.9-15
    • /
    • 2016
  • The endpoint detection (EPD) is the most important technique in plasma etching process. In plasma etching process, the Optical Emission Spectroscopy (OES) is usually used to analyze plasma reaction. And Plasma Impedance Monitoring (PIM) system is used to measure the voltage, current, power, and load impedance of the supplied RF power during plasma process. In this paper, a new decision making algorithm is proposed to improve the performance of EPD in SiOx single layer plasma etching. To enhance the accuracy of the endpoint detection, both OES data and PIM data are utilized and a newly proposed decision making algorithm is applied. The proposed method successfully detected endpoint of silicon oxide plasma etching.

MRI-Induced Full Thickness Burn on the Ear Lobule due to Pulse Oximetry: A Case Report (증례보고: MRI 검사시 귓불에 부착한 산소측정기로 인해 발생한 전층 화상)

  • Kim, BumSik;Lim, SooA;Yoon, JungSoo;Eo, SuRak;Han, Yea Sik
    • Journal of the Korean Burn Society
    • /
    • v.24 no.2
    • /
    • pp.43-45
    • /
    • 2021
  • Magnetic Resonance Image (MRI) has been used as a safe, conventional and harmless diagnostic tool. However, thermal injuries have frequently been reported during MRI scanning due to the heat generated by the reaction with the magnetic field. It is recommended that metal-containing monitoring devices such as pulse oximetry and ECG monitoring leads should be removed prior to the start of the MRI scan, but these monitoring devices are inevitably placed in children or patients in the intensive care unit who have low compliance with the scan. Since the interaction between the metal probe or wire loop of pulse oximetry and the magnetic field can result in high thermal conduction, full-thickness burn can occur over the entire body surface during the MRI examination. Several cases of thermal burns from pulse oximetry on the fingers have been reported. However, we present a case of a full-thickness burn arising left earlobe in a 2-month-old child caused by the high conduction heat from pulse oximetry metal probe.

Self-Symptom Checker for COVID-19 Control and Symptom Management

  • Sun-Ju Ahn;Jong Duck Kim;Jong Hyun Yoon;Jung Ha Park
    • Health Policy and Management
    • /
    • v.33 no.1
    • /
    • pp.29-39
    • /
    • 2023
  • Background: Breaking the chain of disease transmission from overseas is necessary to control new infectious diseases such as coronavirus disease 2019 effectively. In this study, we developed a mobile app called Self-Symptom Checker (SSC) to monitor the health of inbound travelers. Methods: SSC was developed for general users and administrators. The functions of SSC include non-repudiation using QR (quick response) codes, monitoring fever and respiratory symptoms, and requiring persons showing symptoms to undergo polymerase chain reaction tests at nearby screening stations following a review of reported symptoms by the Korea Disease Control and Prevention Agency, as well as making phone calls, via artificial intelligence or public health personnel, to individuals who have not entered symptoms to provide the necessary information. Results: From February 12 to March 27, 2020, 165,000 people who were subjected to the special entry procedure installed SSC. The expected number of public health officers and related resources needed per day would be 800 if only the phone was used to perform symptom monitoring during the above period. Conclusion: By applying SSC, more effective symptom monitoring was possible. The daily average number of health officers decreased to 100, or 13% of the initial estimate. SSC reduces the work burden on public healthcare personnel. SSC is an electronic solution conceived in response to health questionnaires completed by inbound travelers specified in the World Health Organization International Health Regulations as a requirement in the event of a pandemic.

Determination of Combustion Propagation Velocity of Thermite Reaction Mixture Using Continuous VOD Measurement System (연속적 폭굉속도 측정 시스템을 이용한 테르밋 반응 혼합물의 연소전파속도 측정에 관한 연구)

  • Kim, Min-Seong;Kang, Hyeong-Min;Jeong, Sang-Sun;Jeong, Yun-Yeong;Park, Hoon;Cho, Sang-Ho
    • Explosives and Blasting
    • /
    • v.33 no.3
    • /
    • pp.21-28
    • /
    • 2015
  • The objective of this study is to develop a method for monitoring continuously the combustion propagation behavior of commercial thermite reaction mixtures using conventional continuous VOD (velocity of detonation) system. In order to monitor the combustion front propagation with elapsed time during thermite reaction, the VOD system employs two types of commercial VOD probes and one self-made probe: VOD PROBEROD-OS, VOD PROBEROD-HS and VOD PROBEROD-ES, respectively. Among the probes, the only self made VOD PROBEROD-ES successfully demonstrates the velocity of combustion propagation (VOC) with elapsed time. It was found that VOC of the thermite reaction mixture inside a steel tube has been reached around 200m/s within 100mm distance from the ignition and dramatically increased up to about twice the speed of sound in the range between 100mm and 300mm distance. Finally the VOC reached up to around 800m/s. This results imply that it is necessary to use over 300mm long cartridge of thermite reaction mixture in order to achieve normal VOC of the mixture.

Development of a Rapid Detection Method for Potato virus X by Reverse Transcription Loop-Mediated Isothermal Amplification

  • Jeong, Joojin;Cho, Sang-Yun;Lee, Wang-Hyu;Lee, Kui-jae;Ju, Ho-Jong
    • The Plant Pathology Journal
    • /
    • v.31 no.3
    • /
    • pp.219-225
    • /
    • 2015
  • The primary step for efficient control of viral diseases is the development of simple, rapid, and sensitive virus detection. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has been used to detect viral RNA molecules because of its simplicity and high sensitivity for a number of viruses. RT-LAMP for the detection of Potato virus X (PVX) was developed and compared with conventional reverse transcription polymerase chain reaction (RT-PCR) to demonstrate its advantages over RT-PCR. RT-LAMP reactions were conducted with or without a set of loop primers since one out of six primers showed PVX specificity. Based on real-time monitoring, RT-LAMP detected PVX around 30 min, compared to 120 min for RT-PCR. By adding a fluorescent reagent during the reaction, the extra step of visualization by gel electrophoresis was not necessary. RT-LAMP was conducted using simple inexpensive instruments and a regular incubator to evaluate whether RNA could be amplified at a constant temperature instead of using an expensive thermal cycler. This study shows the potential of RT-LAMP for the diagnosis of viral diseases and PVX epidemiology because of its simplicity and rapidness compared to RT-PCR.

Optimization of liquid phase enzyme immunoassay for determining of progesterone (Progesterone 측정을 위한 액상(液相) 효소면역측정법(酵素免疫測定法)의 최적조건에 관한 연구)

  • Kang, Chung-boo;Choi, Il-kwan;Son, Min-soo;Hur, Ju-hyeong;Kim, Chur-ho
    • Korean Journal of Veterinary Research
    • /
    • v.32 no.3
    • /
    • pp.429-434
    • /
    • 1992
  • This study was carried out to develop an effective liquid-phase double antibody enzyme immunoassay for determining of progesterone. The optimum conditions of assay system, 1st and 2nd antibodies, enzyme conjugate, and time reaction were invested. The bovine plasma progesterone level in dairy cattle and korean native bulls were also analyzed. The results obtained were as follows; 1. The reproducibility of petroleum ether was superior to that of ethyl ether as extract solvent of progesterone in plasma. 2. The optimum dilution rate of 1st and 2nd antibody was 30,000 and 10 times, respectively. Affer the reaction of enzyme conjugate to progesterone 1st antibody, and then 2nd antibody competition reaction was enough for over 1hr. 3. Average plasma progesterone level in 4 pregnant and 9 nonpregnant Holstein was $2.5{\pm}0.5$ and $0.7{\pm}0.2ng/m{\ell}$, respectively. Average plasma progesterone level of 10 Korean native bulls was $0.1{\pm}0.001ng/m{\ell}$ From these results, by using liquid phase double antibody enzyme immunoassay for progesterone is applicable to detect of early pregnancy diagnosis, factorial analysis of reproductive disorder, and also reproductive physiological function such as monitoring of cyclicity during the post-partum period.

  • PDF

Detection of Waterborne Pathogens in Public Bath Houses by PCR-Reverse Blot Hybridization Assay (PCR-REBA) (분자생물학적 방법인 PCR-REBA를 이용한 대중목욕탕 수질 중 수인성병원성미생물 검출)

  • Song, Woon-Heung;Choi, Seung-Gu;Yang, Byoung-Seon;Lee, Jae-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.8
    • /
    • pp.3517-3522
    • /
    • 2011
  • Contamination of public bath water by waterborne pathogens can cause disease outbreaks and contribute to background rates of disease. The aim of this study is to determine the prevalence of waterborne pathogens in public baths. A total of 30 water samples were collected from 30 different public baths in seoul, Korea. Pathogens in water samples were concentrated by 0.45 ${\mu}m$ nitrocellulose membrane filter, analyzed by both cultivation and polymerase chain reaction-reverse blot hybridization (PCR-REBA) of partial 16S rRNA gene. Various microorganisms including Escherichia coli and Shigella spp. were identified by microbiological cultivation. E. coli, Shigella spp., Salmonella spp., Pseudomonas spp. and Mycobacterium spp. were identified by PCR-REBA. Our results suggest that appropriate hygiene practice and continuous monitoring is needed for reducing health risk associated with public bath houses.