• Title/Summary/Keyword: Reaction layer

Search Result 1,565, Processing Time 0.032 seconds

Highly Stable Photoluminescent Qunatum Dot Multilayers by Layer-by-Layer Assembly via Nucleophilic Substitution Reaction in Organic Media

  • Yun, Mi-Seon;Kim, Yeong-Hun;Jeong, Sang-Hyeok;Baek, Hyeon-Hui;Jo, Jin-Han
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.244.2-244.2
    • /
    • 2011
  • We introduce a novel and robust method for the preparation of nanocomposite multilayers, which allows the excellent photoluminescent (PL) properties as well as the accurate control over the composition and dimensions of multilayers. By exchanging the oleic acid stabilizers of CdSe@ZnS quantum dots (QDs) synthesized in organic solvent with 2-bromo-2-methylpropionic acid (BMPA) in the same solvent, these nanoparticles were be alternately deposited by nucleophilic substitution reaction with highly branched poly(amidoamine) dendrimer (PAMA) through layer-by-layer (LbL) assembly process. Our approach does not need to be transformed into the water-dispersible nanoparticles with electrostatic or hydrogen-bonding groups, which can deteriorate their inherent properties, for the built-up of multilayers. The nanocomposite multilayers including QDs exhibited the strong PL properties achieving densely packed surface coverage as well as long-term PL stability under atmospheric conditions in comparison with those of conventional LbL multilayers based on electrostatic interaction. Furthermore, we demonstrate that the flexible multilayer films with optical properties can be easily prepared using nucleophilic substitution reaction between bromo and amino groups in organic media. This robust and tailored method opens a new route for the design of functional film devices based on nanocomposite multilayers.

  • PDF

Sliding Wear Properties of Ni-Al based Intermetallics Layer coated on Aluminum through Reaction Synthesis Process (알루미늄 기판 위 반응합성 Coating 된 Ni-Al계 금속간화합물의 미끄럼마모 특성 해석)

  • Lee, Han-Young
    • Tribology and Lubricants
    • /
    • v.34 no.2
    • /
    • pp.67-73
    • /
    • 2018
  • Ni-Al intermetallic coating technology is an available method for the strengthening of aluminum substrate. In this study, Ni-Al intermetallics were coated on an aluminum substrate through a reaction synthesis process at a temperature lower than melting point of aluminum. And the sliding wear properties of the coatings have been investigated to verify their usability and compared the wear properties with those of a cast Al-12.5%Si alloy and an anodizing layer on aluminum. Results show that the wear rate of the coating layer greatly increased at 1 m/s and 1.5 m/s when compared with that of the cast Al-12.5%Si alloy. Much pitting damages were observed on the worn surfaces at these sliding speeds, unlike at other sliding speeds. The wear of the intermetallic coating layer at these sliding speeds seems to be increased by pitting as a consequence of adhesion. In contrast, wear of the coating layer at other speeds hardly occurs, regardless of wear periods. Nevertheless, the wear properties of the intermetallic coating layer on the aluminum substrate through the reaction synthesis process are more stable than those of anodized aluminum and are superior to those of the cast Al-12.5%Si alloy in a steady-state wear period.

Metal-Mold Reaction and Surface Roughness Measurement of Pure Titanium Casting Specimens with Mold Temperatures (순수 티타늄 주조체의 주형온도에 따른 용탕반응성 및 표면거칠기)

  • Cha, Sung-Soo;Song, Young-Ju;Park, Soo-Chul
    • Journal of Technologic Dentistry
    • /
    • v.32 no.4
    • /
    • pp.297-305
    • /
    • 2010
  • Purpose: The purpose of this study was to observe the change of metal-mold reaction and surface roughness in titanium casting specimens for phosphate-silica alumina bonded investment with mold temperatures. Methods: The metal-phosphate silica alumina bonded mold interface reaction and surface roughness of titanium casting specimens according to mold temperatures were investigated. The Specimens were analysed by scanning electron microscopy and surface roughness tester. Results: The oxidation behavior indicated by the growth of oxide thickness. The titanium-oxide layer were consisted two layer of a porous external and a dense internal one. The reaction layer and surface roughness increased with increasing investment material temperature. Conclusion: In this work, The most suitable mold temperature in casting of pure titanium was $200^{\circ}C$.

Fabrication of SiC Converted Graphite by Chemical Vapor Reaction Method (화학적 기상 반응법에 의한 탄화규소 피복 흑연의 제조 (I))

  • 윤영훈;최성철
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.12
    • /
    • pp.1199-1204
    • /
    • 1997
  • SiC conversion layer was fabricated by the chemical vapor reaction between graphite substrate and silica powder. The CVR process was carried out in nitrogen atmosphere at 175$0^{\circ}C$ and 185$0^{\circ}C$. From the reduction of silica powder with graphite substrate, the SiO vapor was created, infiltrated into the graphite substrate, then, the SiC conversion layer was formed from the vapor-solid reaction of SiO and graphite. In the XRD pattern of conversion layer, it was confirmed that 3C $\beta$-SiC phase was created at 175$0^{\circ}C$ and 185$0^{\circ}C$. Also, in the back scattered image of cross-sectional conversion layer, it was found that the conversion layer was easily formed at 185$0^{\circ}C$, the interface of graphite substrate and SiC layer was observed. It was though that the coke particle size and density of graphite substrate mainly affect the XRD pattern and microstructure of SiC conversion layer. In the oxidation test of 100$0^{\circ}C$, the SiC converted graphites exhibited good oxidation resistance compared with the unconverted graphites.

  • PDF

On Crystallization of Hadong Kaolin Granulated Cylindrically Treated with Aqueous Sodium Hydroxide Solution (원주형으로 성형된 하동고령토의 수산화나트륨 수용액 처리에 의한 결정의 변화)

  • 김면섭
    • Journal of the Korean Ceramic Society
    • /
    • v.15 no.1
    • /
    • pp.21-27
    • /
    • 1978
  • Hadong Kaolin (Halloysite) was granulated cylindrically and treated with 1N aqueous sodium hydroxide solution for 6-48 hrs at 60-10$0^{\circ}C$. The crystalling structure of surface of the products was studied by X-ray powder diffraction method. The reaction rate of halloysite to sodium A zeolite showed a gradual decrease from surface to inner layer. At the surface layer, the reaction mechanism was observed as first order consecutive reaction as follows: halloysitelongrightarrowamorphous aluminosilicatelongrightarrowsodium A zeolitelongrightarrowhydroxysodalite By applying the above reaction mechanism, the rate constants and activation energies was measured.

  • PDF

Characteristics of the Surface Coating Layer of Ti5Si3 Intermetallic Compound Obtained by Shock Compaction and Reaction Synthesis Through Underwater Shock Compression (수중충격파를 이용하여 충격고화와 반응합성으로 제조된 Ti5Si3 금속간 화합물의 표면코팅 층의 특성에 관한 연구)

  • Lee, Sang-Hoon
    • Journal of Powder Materials
    • /
    • v.15 no.2
    • /
    • pp.101-106
    • /
    • 2008
  • The objective of the present study is to investigate the increase in the functional characteristics of a substrate by the formation of a thin coating layer. Thin coating layers of $Ti_5Si_3$ have high potential because $Ti_5Si_3$ exhibits high hardness. Shock induced reaction synthesis is an attractive fabrication technique to synthesize uniform coating layer by controlling the shock wave. Ti and Si powders to form $Ti_5Si_3$ using shock induced reaction synthesis, were mixed using high-energy ball mill into small scale. The positive effect of this technique is highly functional coating layer on the substrate due to ultra fine substructure, which improves the bonding strength. These materials are in great demand as heat resisting, structural and corrosion resistant materials. Thin $Ti_5Si_3$ coating layer was successfully recovered and showed high Vickers' hardness (Hv=1183). Characterization studies on microstructure revealed a fairly uniform distribution of powders with good interfacial integrity between the powders and the substrate.

Low Temperature Encapsulation-Layer Fabrication of Organic-Inorganic Hybrid Thin Film by Atomic Layer Deposition-Molecular Layer Deposition

  • Kim, Se-Jun;Kim, Hong-Beom;Seong, Myeong-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.274-274
    • /
    • 2013
  • We fabricate encapsulation-layer of OLED panel from organic-inorganic hybrid thin film by atomic layer deposition (ALD) molecular layer deposition (MLD) using Al2O3 as ALD process and Adipoyl Chloride (AC) and 1,4-Butanediamine as MLD process. Ellipsometry was employed to verify self-limiting reaction of MLD. Linear relationship between number of cycle and thickness was obtained. By such investigation, we found that desirable organic thin film fabrication is possible by MLD surface reaction in monolayer scale. Purging was carried out after dosing of each precursor to eliminate physically adsorbed precursor with surface. We also confirmed roughness of the organic thin film by atomic force microscopy (AFM). We deposit AC and 1,4-Butanediamine at $70^{\circ}C$ and investigated surface roughness as a function of increasing thickness of organic thin film. We confirmed precursor's functional group by IR spectrum. We calculated WVTR of organic-inorganic hybrid super-lattice epitaxial layer using Ca test. WVTR indicates super-lattice film can be possibly use as encapsulation in flexible devices.

  • PDF

Growth of Interfacial Reaction Layer by the Isothermal Heat Treatment of Cast-Bonded Fe-C-(Si)/Nb/Fe-C-(Si) (Nb/Fe-C-(Si) 주조접합재에서 등온열처리시 계면반응층의 성장에 관한 연구)

  • Jung, B.H.;Kim, M.G.;Jeong, S.H.;Park, H.I.;Ahn, Y.S.;Lee, S.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.5
    • /
    • pp.260-266
    • /
    • 2003
  • In order to study the interfacial reaction between Nb thin sheet and Fe-C-(Si) alloy with different Chemical compositions, they were cast-bonded. The growth of carbide layer formed at the interface after isothermal heat treatment at 1173K, 1223K, 1273K and 1323K for various times was investigated. The carbide formed at the interface was NbC and the thickness of NbC layer was increased linearly in proportional to the heat treating time. Therefore, It was found that the growth of NbC layer was controlled by the interfacial reaction. The growth rate constant of NbC layer was slightly increased with increase of carbon content when the silicon content is similar in the cast irons. However, as silicon content increases with no great difference in carbon content, the growth of NbC layer was greatly retarded. The calculated activation energy for the growth of NbC layer was varied in the range of 447.4~549.3 kJ/moI with the compositions of cast irons.

Chemical Reaction between Aluminium and graphite Crucible During the Fabrication of Spherical Monosized Al particles

  • Kwon, Hansang
    • Journal of Powder Materials
    • /
    • v.25 no.2
    • /
    • pp.99-103
    • /
    • 2018
  • Spherical monosized pure aluminum (Al) particles are successfully fabricated by the pulsated orifice ejection method (POEM). The surface reaction between Al and the graphite crucible is investigated by analysing the microstructure and chemical composition of the materials. No significant chemical reaction occurs between Al and the graphite owing to the crystalline Al oxide (${\gamma}-Al_2O_3$) layer generated in the initial state. The ${\gamma}-Al_2O_3$ layer is clearly observed in all regions between the Al particles and graphite via transmission electron microscopy and confirmed by the selected area diffraction pattern. The morphology of the ${\gamma}-Al_2O_3$ layer perfectly follows the surface morphology of the graphite crucible, which showed nanoscale roughness. This implies that molten Al could not directly contact graphite even though the surface of the crucible became rough to some extent. However, this passivation phenomenon allowed the successful fabrication of monosized pure Al particles. Therefore, POEM is a useful process at least to manufacture monosized pure Al particles.

Thermal Deintercalation of Ethylammonium-Aluminosilicate Intercalates with Various Layer Charges

  • Choy, Jin-Ho;Choi, Young-Joon;Han, Yang-Su
    • The Korean Journal of Ceramics
    • /
    • v.1 no.1
    • /
    • pp.40-44
    • /
    • 1995
  • Ethylammonium-layered aluminosilicates intercalates were prepared by ion exchange reaction between the layered silicates with different layer changes density of 0.32∼0.41 e per unit formula and ethylammonium chloride. A kinetic study on the thermal deintercalation of the ethylammonium-layered silicate intercalates was carried out by range of 350℃ to 480℃ (heating rate of 10℃/min). Based on the Ozawa's method, the activation energies of the thermal deintercalation reaction were estimated as 171.2∼133.0 kJ/mol, which increase linearly with the layer charge densities.

  • PDF