• Title/Summary/Keyword: Reaction factor

Search Result 1,843, Processing Time 0.041 seconds

A Study on the Emotional Factors in an Apartment External Space Impact on the Residential Consumption Behavior (아파트 외부공간의 감성적 요소가 주거소비행태에 미치는 영향에 관한 연구)

  • Jung, Eun-Hye;Jeong, Jun-Hyun
    • Journal of the Korean housing association
    • /
    • v.22 no.3
    • /
    • pp.15-24
    • /
    • 2011
  • The purpose of the research is analyzing how the emotional factors of the external apartment design can be influenced by the consumers' emotional reaction, and analyzing how the emotional reaction of the consumers will affect the expenditure of the apartment in the upcoming future. For this purpose, first, external surrounding factors of the apartment are extracted and then classified into three major design categories (instinctive, behavioral, and reflective design), and each factor is evaluated by the emotional evaluation. The scope of the research is restricted to the apartments in Daegu city which are built by Top 3 construction companies from the analysis of construction-working rank (May, 2010). The residential-expenditure data are extracted from D-univ. students, in accordance with the satisfaction of the external surroundings and emotional-reaction against the emotional-design factors of the apartment. This research is done by the statistic analysis program SPSS17.0. This shows that difference of emotional design by the apartment external space requisites will be significance as fundamental data for development of application and planning and apartment external space of emotional design by the apartment external space in the future.

Study on the subgrade reaction modulus$(K_{30})$ and strain modulus$(E_v)$ (지반반력계수$(K_{30})$와 변형률계수$(E_v)$에 대한 고찰)

  • Kim, Dae-Sang;Choi, Chan-Yong;Kim, Seong-Jung;Yu, Jin-Young;Yang, Sin-Chu
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.3 s.40
    • /
    • pp.264-270
    • /
    • 2007
  • Two modulus, strain modulus $(E_v)$ and subgrade reaction modulus $(K_{30})$ are being used as a standard for bearing stiffness in Korea Railroad design. The first is used in Europe and the other is used in Japan. The methodologies to obtain the two modulus are similar in using plate. But testing methods are different in loading to plate. Therefore, according to soil strain range, there should be large gap in not only computations of deformation modulus but also the necessary time to test. At first, this paper focuses on the two kinds of test methods to evaluate bearing stiffness. Secondly, based on elastic theory, the theory to obtain the two coefficients are studied thoroughly. Finally, the correlations between the two coefficients were analyzed and evaluated based on the field test results more than 38 places. The matching values for subgrade and ground between $K_{30}$ and $E_{v2}$ are proposed with the consideration of the proposed strain reduction factor (1.5 for subgrade and 3 for ground) and safety factor, respectively.

Enhancing the Flavor of Pearl Oyster (Pinctada fucata) Extract Using Reaction Flavoring (Reaction Flavoring에 의한 진주조개 (Pinctada fucata) 추출물의 풍미개선)

  • Kang, Jeong-Goo;Nam, Gi-Ho;Kang, Jin-Yeong;Hwang, Seok-Min;Kim, Jeong-Gyun;Oh, Kwang-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.6
    • /
    • pp.350-355
    • /
    • 2007
  • The optimal substrates and reaction flavoring conditions were examined to develop pearl oyster extract (POE) flavor using the Maillard reaction under a model system. The sugar for the Maillard reaction was glucose, and the amino acid was cysteine, with glycine as the reaction substrate. A three-dimensional response surface method was used to monitor the dynamic changes of the substrates during the Maillard reaction. To enhance the flavor of POE, a two-step enzymatic hydrolysate (Brix $20^{\circ}$) was reacted with the precursors (1:1, v/v). A 2:1:1 mixture of 0.4 M glucose:0.4 M glycine:0.4 M cysteine (v/v) was selected as a suitable reaction system for the reappearance of baked potato odor and boiled meat odor, and masking the shellfish odor. The two-step enzymatic hydrolysate and selected precursors were reacted in a high-pressure reactor to optimize the reaction parameters. The optimum conditions were 150 minutes at $120\;^{\circ}C$ and pH 7.0. The pH was the most critical factor for the response of the baked potato odor and masking the shellfish odor, while the reaction time affected the reappearance of the boiled meat odor.

Production of Inulo-oligosaccharides from Inulin by a Purified Endoinulinase from Aspergillus ficcum (ASpergillus ficuum 기원의 정제 endoinulinase를 이용한 이눌린으로부터 이눌로올리고당의 생산)

  • 윤호범;김동현;윤종원;김병우;송승구
    • KSBB Journal
    • /
    • v.13 no.3
    • /
    • pp.284-288
    • /
    • 1998
  • Production of inulo-oligosaccharides from inulin was carried out with the maximum yield of 94% using a purified endoinulinase from Aspergillus ficcum. The optimum reaction temperature and pH were 55-60$^{\circ}C$ and pH 5.5-6.0, respectively. The Michaelis constant and maximum reaction velocity of the endoinuinase for inulin were 13.27 g/L and 0.13 g/L$.$min at 55$^{\circ}C$, pH 5.5, respectively. Inulin source had no significant effect on oligosaccharide yield and product composition, although initial production rate differed according to inulin origins. The reaction pH was a critical factor in inulo-oligosaccharide production because considerable free monosaccharides were released, decreasing oligosaccharide yield at low pH conditions. An empirical relationship describing the reaction performance was developed from kinetic data: the time to reach maximum oligosaccharide yield (tw) as a function of initial concentration of inulin (lo) and enzyme (Eo); i.e., log tM = -1.025 log Eo - 0.011 l0 + 2.655.

  • PDF

Adaptive Finite Element Analysis of Shock-induced Combustion (충격파를 동반한 연소현상에 관한 적응 격자 유한요소법 해석)

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.444-449
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction front is established if the the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger.

  • PDF

Product Phase Control During Interdiffusion Reactions (상호 확산 반응 중의 생성상 제어)

  • Park, Joon-Sik;Kim, Ji-Hoon;Perepezko, John R.
    • Journal of Korea Foundry Society
    • /
    • v.26 no.1
    • /
    • pp.27-33
    • /
    • 2006
  • Phase evolutions involving nucleation stages together with diffusional growth have been examined in order to provide a guideline for determining rate limiting stages during phase evolutions. In multiphase materials systems in coatings, composites or multilayered structures, diffusion treatments often result in the development of metastable/intermediate phases at the reaction interfaces. The development of metastable phases during solid state interdiffusion demonstrates that the nucleation reaction can be one controlling factor. Also, the concentration gradient and the relative magnitudes of the component diffusivities provide a basis for a phase selection and the application of a kinetic bias strategy in the phase selection. For multicomponent alloy systems, the identification of the operative diffusion pathway is central to control phase formation. Experimental access to the nucleation and growth stage is discussed in thin film multi layers and bulk samples.

Numerical Simulation of Projectiles in Detonable Gases

  • Moon, Su-Yeon;Lee, Chooung-Won;Sohn, Chang-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.43-47
    • /
    • 2001
  • A numerical parametric study is conducted to simulate shock-induced combustion with a variation in freestream conditions. The analysis is limited to inviscid flow and includes chmical nonequilibrium. A steady combustion front is established if the freestream Mach number is above the Chapman-Jouguet speed of the mixture. On the other, an unsteady reaction fi:ont is established if the freestream Mach number is below or at the Chapman-Jouguet speed of the mixture. The three cases have been simulated for Machs 4.18, 5.11, and 6.46 with a projectile diameter of 15 mm. Machs 4.18 and 5.11 shows an unsteady reaction front, whereas Mach 6.46 represents a steady reaction front. Thus Chapman-Jouguet speed is one of deciding factor for the instabilities to trigger. The instabilities of the chemical front with a variation of projectiles diameters will be investigated.

  • PDF

Reaction Temperature md Electrical Properties of Pb(Mn1/3 Sb2/3) 0.08 Ti0.495 Zr0.425 $O_3$ ceramics by Hydrothermal Synthesis (수열합성에 의한 3성분계 PZT의 반응온도 및 전기적 성질)

  • Lee, Myeong-Gyo;Jeong, Su-Tae;Hong, Chang-Hui
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.191-193
    • /
    • 1985
  • Reaction temperature md piezoelectric properties of Pb(Mn1/3 Sb2/3)0.08 Ti0.495 Zr0.425 $O_3$ ceramics by hydrothermal synthesis method have been investigated. Sintering density and dielectric constant of sample increased with increasing of hydrothermal reaction temperature, while decreased rapidly above $240^{\circ}C$. Electromechanical coupling factor kp was almost constant at the reaction temperature $160^{\circ}-240^{\circ}C$.

  • PDF

A Study on the Nano-Deformation Behaviors of Single Crystal Silicon and Amorphous Borosilicate Considering the Mechanochemical Reaction (기계화학적 반응을 고려한 단결정 실리콘과 비정질 보로실리케이트의 나노 변형 거동에 관한 연구)

  • 윤성원;신용래;강충길
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.623-630
    • /
    • 2003
  • Nanomachining process, static nanoplowing, is one of the most promising lithographic technologies in terms of the low cost of operation and variety of workable materials. In nanomachining process, chemical effects are more dominant factor compared with those by physical deformation or fracture. For example, during the nanoscratch on a silicon surface in the atmosphere, micro protuberances are formed due to the mechanochemical reaction between diamond tip and the surfaces. On the contrary, in case of chemically stable materials, such as ceramic or glass, surface protuberances are not formed. The purpose of this study is to understand effects of the mechanochemical reaction between tip and surfaces on deformation behaviors of hard-brittle materials. Nanometerscale elasoplastic deformation behavior of single crystal silicon (100) was characterized with micro protuberance phenomena, and compared with that of borosilicate (Pyrex glass 7740). In addition, effects of the silicon protuberances on nanoscratch test results were discussed.

Uncertainty Quantification of the Experimental Spectroscopic Factor from Transfer Reaction Models

  • Song, Young-Ho;Kim, Youngman
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1247-1254
    • /
    • 2018
  • We study the uncertainty stemming from different theoretical models in the spectroscopic factors extracted from experiments. We use three theoretical approaches, the distorted wave Born approximation (DWBA), the adiabatic distorted wave approximation (ADWA) and the continuum discretized coupled-channels method (CDCC), and analyze the $^{12}C(d,p)^{13}C$, $^{14}C(d,p)^{15}C$ reactions. We find that the uncertainty associated with the adopted theoretical models is less than 20%. We also investigate the contribution from the remnant term and observe that it gives less than 10% uncertainty. We finally make an attempt to explain the discrepancy in the spectroscopic factors of $^{17}C(\frac{3}{2}^+)$ between the ones extracted from experiments and from shell model calculations by analyzing the $^{16}C(d,p)^{17}C$ reaction.