• Title/Summary/Keyword: Reaction engineering

Search Result 10,336, Processing Time 0.049 seconds

Effect of the Preparation Method on the Activity of CeO2-promoted Co3O4 Catalysts for N2O Decomposition (촉매 제조방법에 따른 Co-CeO2 촉매의 N2O 분해 특성 연구)

  • Kim, Hye Jeong;Kim, Min-Jae;Lee, Seung-Jae;Ryu, In-Soo;Yi, Kwang Bok;Jeon, Sang Goo
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.198-205
    • /
    • 2018
  • This study investigated the influence of catalyst preparation on the activity of $Co-CeO_2$ catalyst for $N_2O$ decomposition. $Co-CeO_2$ catalysts were synthesized by co-precipitation and incipient wetness impregnation. In order to estimate the performance of the as prepared catalysts, direct catalytic $N_2O$ decomposition test was carried out under $250{\sim}375^{\circ}C$. As a result, the catalyst prepared by co-precipitation (CoCe-CP) showed an enhanced performance on $N_2O$ decomposition reaction even in the presence of $O_2$ and/or $H_2O$, whereas the impregnation catalyst (CoCe-IM) did not. In order to investigate the difference in catalytic activity, characterization such as XRD, BET, TEM, $H_2-TPR$, $O_2-TPD$, and XPS was conducted. It is confirmed that the particle size and specific surface area were changed depending on the catalyst preparation method and the synthesis process influenced the physical properties of the catalysts. In addition, the improvement in the activity of the catalyst prepared by co-precipitation is due to the enhanced reduction from $Co^{3+}$ to $Co^{2+}$ and the improved oxygen desorption rate. However, it has been confirmed that the surface electron state and binding energy, which are related to $N_2O$ decomposition, do not change depending on the preparation method.

Study on the Structural and Transporting Property of Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) (Sr2Ru1-xCuxO4-y(0.0≤x≤0.5) 화합물의 구조 및 전달 특성에 대한 연구)

  • Park, Jung-Chul
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.6
    • /
    • pp.614-618
    • /
    • 2003
  • $Sr_2Ru_{1-x}Cu_xO_{4-y}(0.0{\le}x{\le}0.5)$ compounds were prepared using a conventional solid state reaction. Based on the Rietveld refinements of X-ray diffraction results, it is revealed that $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds are the single phases with K2NiF4 type tetragonal system in the range of 0=x=0.3, while the mixed phases of$Sr_2RuO_4$ and $Sr_2CuO_3$ in the range of $0.4{\le}x{\le}0.5$. By means of X-ray photoelectron spectroscopy, the valence states of Ru and Cu in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, have been confirmed to 4+ and 2+, respectively. The bond length difference between $Ru-O_1 ({\times}4)\;and\;Ru-O_2 ({\times}2)\;in\;RuO_6$ octahedron is gradually decreased with increasing Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$, which results in the lower c/a ratio. So, it might be assured that the variation of local symmetry of $RuO_6$ octahedron is very closely related to the transporting property of $Sr_2Ru_{1-x}Cu_xO_{4-y}$ compounds. The behavior of resistivity discloses that the metallic property in $Sr_2RuO_4$ changes into the semiconducting one in proportion to the Cu content in $Sr_2Ru_{1-x}Cu_xO_{4-y}$.

The Influence of Admixture of Lignosulfonic Acid Type on the Strength of Mortar (Lignosulfonic Acid계(系) 감수제(減水劑)가 모르터의 강도(强度)에 미치는 영향(影響))

  • Kim, Han Young;Kim, Seong Wan
    • Korean Journal of Agricultural Science
    • /
    • v.12 no.1
    • /
    • pp.75-85
    • /
    • 1985
  • This study is intended to find out the influence of Lignosulfonic Acid Type Admixture on compressive, tensile, flexural strength and dispersing action of mortar, and fixation of by-product of pulp industry. 1. The more Pozzolith-84 is added, the larger flow value is. The admixture of lignosulfonic acid type adhere to cement particles and the surface potential of particles is generated. On account of the repulsion among the cement particles, they are dispersed and the mortar get workable, so the production cost of precast product is curtailed and the amount of cement is reduced in a certain workability of mortar. 2. The strength of mortar is greater than plain mortar when P/C added is 0.2 and 0.4%. As time passed the potential energy is reduced and the distance of particles which lignosulfonic acid adhered to get near according as the amount of adhesion is increased. The setting and hardening reaction of morter is occurred in close state, so the strength of mortar is increased a little. The strength of mortar is less than plain mortar when amount P/C added is 0.8%. Pozzolith-84 is mainly composed of lignosulfonic acid and lignin does not influence the hardening of mortar, therefore the remained $SO_3$, $SO_3H$ are the reason of decrease of strength. 3. There is high significance between specific gravity and compressive strength. The larger specific gravity is, the more compressive strength is increased. There is high significance between 7 day's strength and 28 day's strength. The larger compressive strength is, the more tensile and flexural strength are increased. 4. Since Pozzolith-84 is a by-product of pulp industry, by using the Pozzolith-84 admixture the concreate quality is improved. The water pollusion is reduced according to fix by-products in concrete structure.

  • PDF

The Photocatalytic Degradation of Humic Acid by TiO2 Sol-Gel Coating -Characterization of Humic Acid in the Chemical Oxidation Treatment (II)- (TiO2 졸-겔 코팅 막에 의한 Humic Acid의 광분해 -화학적 산화법에 의한 부식산의 분해처리 기술에 관한 연구 (II)-)

  • Seok, Sang Il;Ahn, Bok Yeop;Suh, Tae Soo;Rhee, Dong Seok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.765-773
    • /
    • 2000
  • The degradation of humic acid using $TiO_2$ coatings was studied, $TiO_2$ coatings were prepared by dip-coating method. Sol solutions for coating were prepared by mixing the gel, which can be produced by the reaction of $TiOCl_2$ and $NH_4OH$ solution, and hydrogen peroxide solution, and hydrolysis of titanium tetraisopropoxide (TTIP). It was shown from XRD that coatings from sol aged at $100^{\circ}C$ for 18h with titanium peroxo solution were crystallized to anatase in the range of temperatures of $25^{\circ}C$ to $500^{\circ}C$. In contrast, those coated from TTIP were crystallized to anatase at temperature above $400^{\circ}C$. So the sols originated from $TiCl_4$ can be applied for not only on the heat-resistance substrates but on the plastic substrates. Thickness and the quality of the films were dependent on the withdrawing speed, the concentration of sol, and the number of coating. The films showed various interference colors depending on the thickness of them. In the case that the films coated 2 times at withdrawing speed of 2.5cm per minute by 0.2M sol, the films had a transparent light blue color with thickness of around 50nm. It was known from the result of photo-degradation by $TiO_2$ coatings using humic acid that the removal efficiency of $COD_{cr}$ was over 85% after illumination of $UV/H_2O_2$ for 40min. and that of UV/VIS absorbable materials was over 95%.

  • PDF

Surface Characteristics and Spontaneous Combustibility of Coal Treated with Non-polar Solvent under Room Temperature (상온에서의 용매 처리를 통한 저등급 석탄의 표면물성 및 자연발화 특성 변화)

  • Jo, Wan Taek;Choi, Ho Kyung;Kim, Sang Do;Yoo, Ji Ho;Chun, Dong Hyuk;Rhim, Young Joon;Lim, Jeong Hwan;Lee, Si Hyun
    • Korean Chemical Engineering Research
    • /
    • v.51 no.5
    • /
    • pp.609-614
    • /
    • 2013
  • This study investigated the spontaneous combustion behavior of solvent-treated low rank coals. Indonesian lignite (a KBB and SM coal) and sub-bituminous (a Roto coal) were mixed with non-polar 1-methyl naphthalene (1MN) either by mechanical agitation or ultrasonication. The property change associated with 1MN treatment was then analyzed using proximate analysis, calorific value analysis, Fourier transform infrared (FT-IR), X-ray photoelectron spectroscopy and moisture re-adsorption test. Susceptibility to spontaneous combustion was evaluated using crossingpoint temperature (CPT) measurement along with gas analysis by GC. A FT-IR profile showed that oxygen functional groups and C-H bonding became weaker when treated by 1 MN. XPS results also indicated a decrease of the oxygen groups (C-O-, C=O and COO-). Increased hydrophobicity was found in the 1MN treated coals during moisture readsorption test. A CPT of the treated coals was ${\sim}20^{\circ}C$ higher than that of the corresponding raw coals and the ultrasonication was more effective way to enhance the stability against spontaneous combustion than the agitation. In the gas analysis less CO and $CO_2$ were emitted from 1MN treated coals, also indicating inhibition of pyrophoric behavior. The surface functional groups participating in the oxidation reaction seemed to be removed by the ultrasonication more effectively than by the simple mechanical agitation.

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Esterification Reaction of Animal Fat for Bio-diesel Production (바이오디젤 생산을 위한 동물성 오일의 에스테르화 반응)

  • Kim, Sung-Min;Kim, Deog-Keun;Lee, Jin-Suk;Park, Soon-Chul;Rhee, Young-Woo
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.102-110
    • /
    • 2012
  • In this study, the production of bio-diesel from animal oil by esterification and trans-esterification was investigated. There were three different extraction methods for oil extraction from raw animal fat. Heterogeneous catalysts such as Amberlyst-15 and Amberlyst BD-20 and a homogeneous catalyst such as sulfuric acid were used for esterification. Among three catalysts, the removal efficiency of Free Fatty Acid (FFA) was the highest in sulfuric acid. Response surface method was carried out to find the optimal esterification condition of sulfuric acid and methanol. After the esterification under the optimal condition, this animal fat was used for the trans-esterification. Animal oil used for trans-esterification was below 1% of FFA content and 0.09% of water content. The catalysts for trans-esterification were KOH, NaOH and $NaOCH_3$. To investigate the effects of catalyst type and amount on trans-esterification, The amount of catalyst were changed with 0.3, 0.6 and 0.9 wt%. The molar ratio of methanol/oil was changed with 4, 6, 9 and 12. The amount of catalyst was fixed to 0.8 wt%. The KOH catalyst showed the highest FAME conversion for trans- esterification, and the optimal methanol/oil weight ratio was 6. In the experiments of various catalysts and methanol molar ratios, the highest content of FAME is 96%. However, this FAME content was below Korean bio-diesel standard which is 96.5% of FAME content. After distillation, FAME content increased to 98%.

Detection of Point Mutations in the rpoB Gene Related to Drug Susceptibility in Mycobacterium Tuberculosis using an Oligonucleotide Chip (올리고뉴클레오티드 칩(Oligonucleotide Chip)을 이용한 항결핵제 감수성과 관련된 Mycobacterium tuberculosis rpoB 유전자의 점돌연변이 판별 방법)

  • Kim, Hyun-Jung;Kim, Seong-Keun;Shim, Tae-Sun;Park, Yong-Doo;Park, Mi-Sun
    • Tuberculosis and Respiratory Diseases
    • /
    • v.50 no.1
    • /
    • pp.29-41
    • /
    • 2001
  • Background : The appearance of multiple-drug-resistant Mycobacterium tuberculosis strains has been seriously compromising successful control of tuberculosis. Rifampin-resistance, caused by mutations in the rpoB gene, can be indicative of multiple-drug-resistance, and its detection is of great importance. The present study aimed to develop an oligonucleotide chip for accurate and convenient screening of drug-resistance. Methods : In order to detect point mutations in the rpoB gene, an oligonucleotide chip was prepared by immobilizing specific probe DNA to a microscopic slide glass by a chemical reaction. The probe DNA that was selected from the 81 bp core region of the rpoB gene was designed to have mutation sites at the center. A total of 17 mutant probes related to rifampin-resistance including 8 rifabutin-sensitive mutant probes were used in this study. For accurate determination, wild type probes were prepared for each mutation position with an equal length, which enabled a direct comparison of the hybridization intensities between the mutant and wild type. Results : Mycobacterial genomic DNA from clinical samples was tested with the oligonucleotide chip and the results were compared with those of the drug-susceptibility test in addition to sequencing and INNO-LiPA Rif. TB kit test in some cases. Out of 15 samples, the oligonucleotide chip results of 13 samples showed good agreement with the rifabutin-sensitivity results. The two samples with conflicting result also showed a discrepancy between the other tests, suggesting such possibilities as existence of mixed strains and difference in drug-sensitivity. Further verification of these samples in addition to more case studies are required before the final evaluation of the oligonucleotide chip can be made. Conlcusion : An oligonucleotide chip was developed for the detection of rpoB gene mutations related to drugsusceptibility. The results to date show the potential for using the oligonucleotide chip for accurate and convenient screening of drug-resistance to provide useful information in antituberculosis drug therapy.

  • PDF

Characteristics of Diurnal Variation of High PM2.5 Concentration by Spatio-Temporal Wind System in Busan, Korea (시·공간적 풍계에 따른 부산지역 고농도 PM2.5의 일변화 특성)

  • Kim, Bu-Kyung;Lee, Dong-In;Kim, Jeong-Chang;Lee, Jun-Ho
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.469-480
    • /
    • 2012
  • This study was to analyze the characteristics of diurnal variation of high $PM_{2.5}$ concentration, $PM_{2.5}/PM_{10}$ concentration ratio by spatio-temporal wind system (wind speed and wind direction) for high $PM_{2.5}$ concentration (over the 24 hr environmental standard of $PM_{2.5}$, $50{\mu}g/m^3$) in the air quality observation sites (Jangrimdong: Industrial area, Jwadong: Residential area) that were measured for 3 years (2005. 12. 1-2008. 11. 30) in Busan. The observation days of high $PM_{2.5}$ concentration were 182 at Jangrimdong and 27 at Jwadong. The seasonal diurnal variation of hourly mean of high $PM_{2.5}$ concentration and of $PM_{2.5}/PM_{10}$ concentration ratio showed a similar pattern that had higher variation at dawn, and night and in the morning than in the afternoon. Durning daytime in summer at Jwadong, the $PM_{2.5}/PM_{10}$ concentration ratio increased because a secondary particulate matter, which was created by photochemical reaction, decreased the coarse particles of $PM_{10}$ more than the fine particles of $PM_{2.5}$ concentrations in ocean condition. We did an analysis of spatio-temporal wind system (wind speed range and wind direction) in each time zone. The result showed that high $PM_{2.5}$ concentration at Jangrimdong occurred due to the congestion of pollutants emissions from the industrial complex in Jangrimdong area and the transportation of pollutants from places nearby Jangrimdong. It also showed that high $PM_{2.5}$ concentration occurred at Jwadong because of a number of local residential and commercial activities that caused the congestion of pollutants.

Optimization of Supercritical Water Oxidation(SCWO) Process for Decomposing Nitromethane (Nitromethane 분해를 위한 초임계수 산화(SCWO) 공정 최적화)

  • Han, Joo Hee;Jeong, Chang Mo;Do, Seung Hoe;Han, Kee Do;Sin, Yeong Ho
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.659-668
    • /
    • 2006
  • The optimization of supercritical water oxidation (SCWO) process for decomposing nitromethane was studied by means of a design of experiments. The optimum operating region for the SCWO process to minimize COD and T-N of treated water was obtained in a lab scale unit. The authors had compared the results from a SCWO pilot plant with those from a lab scale system to explore the problems of scale-up of SCWO process. The COD and T-N in treated waters were selected as key process output variables (KPOV) for optimization, and the reaction temperature (Temp) and the mole ratio of nitromethane to ammonium hydroxide (NAR) were selected as key process input variables (KPIV) through the preliminary tests. The central composite design as a statistical design of experiments was applied to the optimization, and the experimental results were analyzed by means of the response surface method. From the main effects analysis, it was declared that COD of treated water steeply decreased with increasing Temp but slightly decreased with an increase in NAR, and T-N decreased with increasing both Temp and NAR. At lower Temp as $420{\sim}430^{\circ}C$, the T-N steeply decreased with an increase in NAR, however its variation was negligible at higher Temp above $450^{\circ}C$. The regression equations for COD and T-N were obtained as quadratic models with coded Temp and NAR, and they were confirmed with coefficient of determination ($r^2$) and normality of standardized residuals. The optimum operating region was defined as Temp $450-460^{\circ}C$ and NAR 1.03-1.08 by the intersection area of COD < 2 mg/L and T-N < 40 mg/L with regression equations and considering corrosion prevention. To confirm the optimization results and investigate the scale-up problems of SCWO process, the nitromethane was decomposed in a pilot plant. The experimental results from a SCWO pilot plant were compared with regression equations of COD and T-N, respectively. The results of COD and T-N from a pilot plant could be predicted well with regression equations which were derived in a lab scale SCWO system, although the errors of pilot plant data were larger than lab ones. The predictabilities were confirmed by the parity plots and the normality analyses of standardized residuals.