• Title/Summary/Keyword: Reaction Sintering SiC

Search Result 137, Processing Time 0.023 seconds

Fabrication of β-SiAlONs by a Reaction-Bonding Process Followed by Post-Sintering

  • Park, Young-Jo;Noh, Eun-Ah;Ko, Jae-Woong;Kim, Hai-Doo
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.5
    • /
    • pp.452-455
    • /
    • 2009
  • A cost-effective route to synthesize $\beta$-SiAlONs from Si mixtures by reaction bonding followed by post-sintering was investigated. Three different z values, 0.45, 0.92 and 1.87, in $Si_{6-z}Al_zO_zN_{8-z}$ without excess liquid phase were selected to elucidate the mechanism of SiAlON formation and densification. For RBSN (reaction-bonded silicon nitride) specimens prior to post-sintering, nitridation rates of more than 90% were achieved by multistep heating to $1400^{\circ}C$ in flowing 5%$H_2$/95%$N_2$; residual Si was not detected by XRD analysis. An increase in density was acquired with increasing z values in post-sintered specimens, and this tendency was explained by the presence of higher amounts of transient liquid phase at larger z values. Measured z values from the synthesized $\beta$-SiAlONs were similar to the values calculated for the starting compositions. Slight deviations in z values between measurements and calculations were rationalized by a reasonable application of the characteristics of the nitriding and post-sintering processes.

Concentration of Liquid-phase in the Surface Region and Microstructural Change in Pressureless Sintered$\beta$-SiC (상압소결 $\beta$-SiC에 있어서 표면부에서의 액상집중과 미세구조의 변화)

  • Lee, Jong-Kook;Yang, Gwon-Seung;Kim, Hwan
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.8
    • /
    • pp.921-927
    • /
    • 1996
  • The liquid-phase concentration from the interior to the surface region and its influence on the microstructural changes were investigated in pressureless sintered $\beta$-SiC Surface reaction-layer was formed by reaction of packing powder and volatile components on the surface during sintering which was induced the concentration of liquid-phase in the surface regions. The microstructural changes between the surface region and the interior were appeared in sintered specimen which was resulted from the difference of liquid-phase content during sintering. Microstructural changes were observd with the depth of about 250${\mu}{\textrm}{m}$ from he surface. The grain size and aspect ratio of SiC in the interior are larger than those in the surface region and the rate of transforma-tion of $\beta$-to $\alpha$-SiC during sintering is higher in the interior than that in the surface region.

  • PDF

Processing and properties of $Al_{2}O_{3}/SiC$ nanocomposites by polycarbosilane infiltration

  • Jung-Soo Ha;Chang-Sung Lim;Chang-Sam Kim
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.80-86
    • /
    • 2002
  • $Al_{2}O_{3}/SiC$ nanocomposites were made by infiltrating partially sintered alumina bodies with polycarbosilane (PCS) solutions, which is a SiC polymer precursor, with pressureless sintering. The SiC content, densification, phases, strength, and microstructure were investigated with the processing parameters such as PCS solution concentration and heat treatment condition for PCS pyrolysis and sintering. The results were compared with those for pure alumina and nanocomposite samples made by the existing polymer precursor route (i.e. the PCS addition process). The SiC contents of up to 1.5 vol% were obtained by the PCS infiltration. PCS pyrolysis, followed by air heat treatment, was needed before sintering to avoid a cracking problem and to attain a densification as high as 98 % of theoretical. The nanocomposites exhibited significantly higher strength than pure alumina and those prepared by the PCS addition process despite larger grain size. Besides $\alpha-Al_{2}O_{3}/SiC$ and $\beta-SiC$ phases, mullite was present a little in the nanocomposites, which resulted from the reaction of $SiO_{2}$ in the pyrolysis product of PCS with the $Al_{2}O_{3}$ matrix during sintering. The nanocomposites had intagranular particles believed to be SiC, which is a typical feature of $Al_{2}O_{3}/SiC$ nanocomposites.

High Temeprature Strength Property of Continuous SiC Fiber Reinforced SiC Matrix Composites (SiC 장섬유 강화 SiC 기지 복합재료의 고온강도 특성)

  • Shin, Yun-Seok;Lee, Sang-Pil;Lee, Jin-Kyung;Lee, Joon-Hyun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.102-105
    • /
    • 2005
  • The mechanical properties of $SiC_f/SiC$ composites reinforced with continuous SiC fiber have been investigated in conjunction with the detailed analysis of their microstructures. Especially, the effect of test temperature on the characterization of $SiC_f/SiC$ composites was examined. In this composite system, a braiding Hi-Nicalon SiC fibric was selected as a reinforcement. $SiC_f/SiC$ composites have been fabricated by the reaction sintering process, using the complex matrix slurry with a constant composition ratio of SiC and C particles. The characterization of $RS-SiC_f/SiC$ composites was investigated by means of SEM, EDS and three point bending test. Based on the mechanical property-microstructure correlation, the high temperature applicability of $RS-SiC_f/SiC$ composites was discussed.

  • PDF

Phase Equilibria and Reaction Paths in the System Si3N4-SiC-TiCxN1-x-C-N

  • H.J.Seifert
    • Journal of Powder Materials
    • /
    • v.6 no.1
    • /
    • pp.18-35
    • /
    • 1999
  • Phase equilibria in the system Si3N4-TiC-TiCxN1-x-C-N were determined by thermodynamic calculations (CALPHAD-method). The reaction peaction paths for Si3N4-TiC and SiC-TiC composites in the Ti-Si-C-n system were simulated at I bar N2-pressure and varying terpreatures. At a temperature of 1923 K two tie-triangles (TiC0.34N0.66+SiC+C and TiC0.13N0.87+SiC+Si3N4) and two 2-phase fieds (TiCxN1-x+SiC; 0.13

Effect of Y2O3 Additive Amount on Densification of Reaction Bonded Silicon Carbides Prepared by Si Melt Infiltration into All Carbon Preform (완전 탄소 프리폼으로부터 Si 용융 침투에 의해 제조한 반응 소결 탄화규소의 치밀화에 미치는 Y2O3 첨가량의 영향)

  • Cho, Kyeong-Sik;Jang, Min-Ho
    • Korean Journal of Materials Research
    • /
    • v.31 no.5
    • /
    • pp.301-311
    • /
    • 2021
  • The conversion of all carbon preforms to dense SiC by liquid infiltration can become a low-cost and reliable method to form SiC-Si composites of complex shape and high density. Reactive sintered silicon carbide (RBSC) is prepared by covering Si powder on top of 0.5-5.0 wt% Y2O3-added carbon preforms at 1,450 and 1,500℃ for 2 hours; samples are analyzed to determine densification. Reactive sintering from the Y2O3-free carbon preform causes Si to be pushed to one side and cracking defects occur. However, when prepared from the Y2O3-added carbon preform, an SiC-Si composite in which Si is homogeneously distributed in the SiC matrix without cracking can be produced. Using the Si + C = SiC reaction, 3C and 6H of SiC, crystalline Si, and Y2O3 phases are detected by XRD analysis without the appearance of graphite. As the content of Y2O3 in the carbon preform increases, the prepared RBSC accelerates the SiC conversion reaction, increasing the density and decreasing the pores, resulting in densification. The dense RBSC obtained by reaction sintering at 1,500 ℃ for 2 hours from a carbon preform with 2.0 wt% Y2O3 added has 0.20 % apparent porosity and 96.9 % relative density.

Interfacial Characteristics and Mechanical Properties of HPHT Sintered Diamond/SiC Composites (초고압 소결된 다이아몬드/실리콘 카바이드 복합재료의 계면특성 및 기계적 특성)

  • Park, Hee-Sub;Ryoo, Min-Ho;Hong, Soon-Hyung
    • Journal of Powder Materials
    • /
    • v.16 no.6
    • /
    • pp.416-423
    • /
    • 2009
  • Diamond/SiC composites are appropriate candidate materials for heat conduction as well as high temperature abrasive materials because they do not form liquid phase at high temperature. Diamond/SiC composite consists of diamond particles embedded in a SiC binding matrix. SiC is a hard material with strong covalent bonds having similar structure and thermal expansion with diamond. Interfacial reaction plays an important role in diamond/SiC composites. Diamond/SiC composites were fabricated by high temperature and high pressure (HPHT) sintering with different diamond content, single diamond particle size and bi-modal diamond particle size, and also the effects of composition of diamond and silicon on microstructure, mechanical properties and thermal properties of diamond/SiC composite were investigated. The critical factors influencing the dynamics of reaction between diamond and silicon, such as graphitization process and phase composition, were characterized. Key factor to enhance mechanical and thermal properties of diamond/SiC composites is to keep strong interfacial bonding at diamond/SiC composites and homogeneous dispersion of diamond particles in SiC matrix.

Mechanical Properties of Hot-Pressed SiC with Rare-Earth Oxide (희토류 산화물을 첨가한 일축가압소결 탄화규소의 기계적 특성)

  • 최철호;이충선;박광자;조덕호;김영욱
    • Journal of the Korean Ceramic Society
    • /
    • v.37 no.2
    • /
    • pp.158-163
    • /
    • 2000
  • Six different SiC ceramics with SiO2-Re2O3 (Re=Yb, Er, Y, Dy, Gd, Sm) as sintering additives have been fabricated by hot-pressing the SiC-Re2Si2O7 compositions at 1850$^{\circ}C$ for 2 hr under a pressure of 25 MPa. The room temperature strneth and the fracture toughness of the hot-pressed ceramics were characterized and compared with those of the ceramics sintered with YAG (Y3Al5O12). Five SiC ceramics (Re=Yb, Er, Y, Dy, Gd) investigated herein showed sintered densities higher than 94% of theoretical. Tthe SiC-Re2Si2O7 compositions showed lower strength and comparable toughness to those from SiC-YAG composition, owing to the chemical reaction between SiO2 and SiC during sintering. SiC ceramics fabricated from a SiC-Y2Si2O7 composition showed the best mechanical properties of 490 MPa and 4.8 MPa$.$m1/2 among the compositions investigated herein.

  • PDF

Fabrication of Textured $Al_2O_3-Mullite-SiC$ Nano-composite by Slip Casting in a High Magnetic Field and Reaction Sintering

  • Sakka, Yoshio;Saito, Sho;Honda, Atsushi;Suzuki, Tohru S.;Moriyoshi, Yusuke
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.327-328
    • /
    • 2006
  • We have demonstrated that textured $Al_2O_3-mullite-SiC$ nanocomposites can be fabricated by slip casting followed by partial oxidation - reaction sintering of mixed suspensions of $Al_2O_3$ and SiC powders in a high magnetic field. The sintered density was changed by the degree of oxidation at 1200C and 1300C. The degree of orientation of alumina in the nanocomposite was examined on the basis of the X-ray diffraction patterns and scanning electron micrographs. It is confirmed that alumina-oriented nanocomposites were fabricated. The three-point bending strength at room temperature was observed for the nanocomposites.

  • PDF