• Title/Summary/Keyword: Reaction Modulus

Search Result 239, Processing Time 0.025 seconds

Preparation and Properties of Polybenzoxazole Copolymers Bearing Pendants and Imide Ring in the Main Chain

  • Lee, Seul Bi;Lee, Eung Jae;Choi, Jae Kon
    • Elastomers and Composites
    • /
    • v.51 no.3
    • /
    • pp.195-205
    • /
    • 2016
  • A series of aromatic poly(hydroxyamide)s (PHAs) containing varying oligo(oxyethylene) substituents and 1,3-phenylene imide ring unit in the main chain were synthesized by the direct polycondensation reaction. The inherent viscosities of the PHAs exhibited in the range of 0.89~1.12 dL/g in DMAc or DMAc/LiCl solution. The PH-2~5 copolymers were easily soluble in strong aprotic solvents: DMAc, NMP, DMSO etc. and the PH-5 copolymer was soluble in less polar solvents such as m-creasol and pyridine with LiCl salt on heating. However, all PBOs were quite insoluble in other solvents, but only partially soluble in sulfuric acid. All copolymers (PH-2~5) could afford the flexible and tough films by solution casting. We identified that the PHAs were converted to the PBOs by the thermal cyclization reaction in the range of $200{\sim}380^{\circ}C$. The 10% weight loss temperatures and char yields of the PBOs were recorded in the range of $382{\sim}647^{\circ}C$ and 38.7~73.1% values at $900^{\circ}C$. The tensile strength and initial modulus of the PH-5 in the copolmers showed the highest values of 2.46 GPa and 49.55 MPa, respectively. The LOI values of the PHAs were in the range 26.6~29.0%, and increased with increasing 1,3-phenylene imide ring unit.

Development f head-neck complex dummy for experimental study (실험적 해석을 위한 머리-목 형태의 더미 개발)

  • Kim, Yeong-Eun;Nam, Dae-Hun;Koh, Chang-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1058-1072
    • /
    • 1997
  • A head-neck complex dummy, for measuring brain pressure and reaction force in the cervical spine was developed for experimental study related in injury mechanism. Dummy comprised aluminium-casted head with water filled cavity for simulating brain and mechanical neck assembled with six motion segments. Several kinds of experiments (compression, bending, cyclic modulus, relaxation and constant velocity profile) for the developed mechanical neck showed that this neck model is biomechanically reliable compared with in-vitro test results. As an application of developed head-neck complex dummy, shock absorbing properties of protective helmet was chosen. The experiments showed that the maximum pressure increment of brain after impact was tolerable compared with the guide line for mild brain injury pressure (25psi). Constrast to this results, the reaction force in the neck was high enough to produce failure in the cervical spine.

A Study on Soil Reaction of Pile Fonndation Subjected to Dynamic Loading (동적 하중을 받는 말뚝기호의 지반반력에 관한 연구)

  • Kim, Young-Su;Lee, Song;Paik, Young-Shik
    • Geotechnical Engineering
    • /
    • v.6 no.4
    • /
    • pp.43-52
    • /
    • 1990
  • To investigate the effects of soil properties of the soft zone around a pile subjected 1,o the horizontal harmonic vibration, the parametric study is perfomed. The determination of the soil reaction or stiffness of the Winkler springs representing the soil around a pile is performed by dividing the soil profile into a number of homogeneous obtained from this study are as follows : 1) The real and imaginary parts of the stiffness show clear variations for the different shear modulus ratios, poisson's ratios, and distance retios to outer boundary as the dimensionless frequency increases. The differences are more pronounced for the imaginary part of the stiffness. 2) The stiffness of soil shows clear decrease. The real parts of the stiffness show larger as the frequency increases. On the other hand, the imaginary parts of the stiffness show smaller.

  • PDF

Study for the Indirect Measuring Method of Operational Force in Surgical Robot Instrument (복강경 수술용 로봇 인스트루먼트의 간접적 작동력 측정법에 관한 연구)

  • Kim, Chi-Yen;Lee, Min-Cheol;Lee, Tae-Kyung;Choi, Seung-Wook;Park, Min-Kyu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.9
    • /
    • pp.840-845
    • /
    • 2010
  • This paper proposes the method indirectly measuring the operating force of the end-effect tip of surgical robot instrument which conducts the surgical operation in the body on behalf of the surgeon's hand. Due to the size and safety obligation to the surgical robot instrument, it is difficult to measure the operation force of its tip like grasping force. However the instrument is driven by cable-pulley torque transmission mechanism and when some force is occurred at the tip, then the reaction force appears on the cable as additional tension. Based on this phenomenon, this paper proposes a method to estimate the operating force from measuring reaction force against the driving motor by using a loadcell. And it induces mathematical equation to calculate the force from loadcell by approaching the modulus of elasticity to high order polynomial. And this paper proves the validity of proposed mechanism by experimental test.

Uncertainty effects of soil and structural properties on the buckling of flexible pipes shallowly buried in Winkler foundation

  • Khemis, Asma;Chaouche, Abdelmadjid Hacene;Athmani, Allaeddine;Tee, Kong Fah
    • Structural Engineering and Mechanics
    • /
    • v.59 no.4
    • /
    • pp.739-759
    • /
    • 2016
  • The failure of civil engineering systems is a consequence of decision making under uncertain conditions. Generally, buried flexible pipes are designed for their transversal behavior to prevent from the important failure mode of buckling. However, the interaction effects between soil and pipe are neglected and the uncertainties in their properties are usually not considered in pipe design. In this regard, the present research paper evaluates the effects of these uncertainties on the uncertainty of the critical buckling hoop force of flexible pipes shallowly buried using the subgrade reaction theory (Winkler model) and First-Order Second-Moment (FOSM) method. The results show that the structural uncertainties of the studied pipes and those of the soil properties have a significant effect on the uncertainty of the critical buckling hoop force, and therefore taking into account these latter in the design of the shallowly flexible pipes for their buckling behavior is required.

Elasto-plastic damage modelling of beams and columns with mechanical degradation

  • Erkmen, R. Emre;Gowripalan, Nadarajah;Sirivivatnanon, Vute
    • Computers and Concrete
    • /
    • v.19 no.3
    • /
    • pp.315-323
    • /
    • 2017
  • Within the context of continuum mechanics, inelastic behaviours of constitutive responses are usually modelled by using phenomenological approaches. Elasto-plastic damage modelling is extensively used for concrete material in the case of progressive strength and stiffness deterioration. In this paper, a review of the main features of elasto-plastic damage modelling is presented for uniaxial stress-strain relationship. It has been reported in literature that the influence of Alkali-Silica Reaction (ASR) can lead to severe degradations in the modulus of elasticity and compression strength of the concrete material. In order to incorporate the effects of ASR related degradation, in this paper the constitutive model of concrete is based on the coupled damage-plasticity approach where degradation in concrete properties can be captured by adjusting the yield and damage criteria as well as the hardening moduli related parameters within the model. These parameters are adjusted according to results of concrete behaviour from the literature. The effect of ASR on the dynamic behaviour of a beam and a column are illustrated under moving load and cyclic load cases.

Cross-linkable and water-soluble phospholipid polymer as artificial extracellular matrix

  • Maeta, Eri;Ishihara, Kazuhiko
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.1 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • The objective of this study is to prepare an artificial extracellular matrix (ECM) for cell culture by using polymer hydrogels. The polymer used is a cytocompatible water-soluble phospholipid polymer: poly[2-methacryloyloxyethyl phosphorylcholine (MPC)-n-butyl methacrylate-p-nitrophenyloxycarbonyl poly(ethylene oxide) methacrylate (MEONP)] (PMBN). The hydrogels are prepared using a cross-linking reaction between PMBN and diamine compounds, which can easily react to the MEONP moiety under mild conditions. The most favorable diamine is the bis(3-aminopropyl) poly(ethylene oxide) (APEO). The effects of cross-linking density and the chemical structure of cross-linking molecules on the mechanical properties of the hydrogel are evaluated. The storage modulus of the hydrogel is tailored by tuning the PMBN concentration and the MEONP/amino group ratio. The porous structure of the hydrogel networks depends not only on these parameters but also on the reaction temperature. We prepare a hydrogel with $40-50{\mu}m$ diameter pores and more than 90 wt% swelling. The permeation of proteins through the hydrogel increases dramatically with an increase in pore size. To induce cell adhesion, the cell-attaching oligopeptide, RGDS, is immobilized onto the hydrogel using MEONP residue. Bovine pulmonary artery endothelial cells (BPAECs) are cultured on the hydrogel matrix and are able to migrate into the artificial matrix. Hence, the RGDS-modified PMBN hydrogel matrix with cross-linked APEO functions as an artificial ECM for growing cells for applications in tissue engineering.

Synthesis and Permeability of Cationic Polycarbonate-Polyurethane (양이온성 폴리카보네이트-폴리우레탄의 합성과 분리특성)

  • Lee, Snag-Woo;Oh, Boo-Keun;Lee, Young-Moo;Noh, Si Tae;Kim, Kea-Yong
    • Applied Chemistry for Engineering
    • /
    • v.1 no.1
    • /
    • pp.52-62
    • /
    • 1990
  • Cationic polycarbonate type polyurethane was prepared from the quaternization reaction of N-methyldiethanolamine(MDEA) in urethane backbone which was obtained from the reaction of polycarbonate polyol, MDI and MDEA(chain exetender). Tensile strength and modulus of the cationic urethane resins were increased sharply with increasing the ionic content in urethane backbone. But hydrolysis resistance was decreased with increasing ionic contents. The selectivity of the cationic polycabonate urethane membrane for water/ethanol separation by pervaporation was about 20. The carrier mediated transport mechanism was considered the most probable separation mechanism for these membranes.

  • PDF

Preparation and Characterization of Polyurethane Bioadhesive from Hydroxyl-terminated Polylactide and Imidazole-blocked Isocyanate (말단 수산화기를 가진 폴리락타이드와 이미다졸로 블록된 이소시아네이트를 이용한 폴리우레탄 바이오접착제의 합성 및 물성 평가)

  • Shen, Tengfei;Sun, Yingjuan;Sun, Chunfeng;Lu, Mangeng
    • Polymer(Korea)
    • /
    • v.37 no.2
    • /
    • pp.232-239
    • /
    • 2013
  • A series of novel imidazole-blocked diisocyanate bioadhesives (IBAs) were synthesized from reaction of toluene 2, 4-diisocyanate (TDI), isophorone diisocyanate (IPDI), hydroxyl-terminated polylactide (HO-PLA-OH), 1,1,1-trimethylolpropane (TMP), and imidazole. Synthesis of IBAs was confirmed by Fourier transform infrared spectroscopy (FTIR) and gel permeation chromatography (GPC). Differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA) revealed that the TDI-based IBA had lower thermal dissociation temperature and a faster deblocking rate than IBA based on IPDI. Hydroxyl-terminated polyurethane (HPU) was introduced to study the adhesive effect of the synthesized IBAs. Improvement on elastic modulus, tensile strength and water resistance of IBA-modified HPU in comparison with neat HPU suggested the good adhesive effect of IBA due to the strong chemical reaction between released NCO groups from IBA and hydroxyl groups from HPU.

Geometric and mechanical properties evaluation of scaffolds for bone tissue applications designing by a reaction-diffusion models and manufactured with a material jetting system

  • Velasco, Marco A.;Lancheros, Yadira;Garzon-Alvarado, Diego A.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.385-397
    • /
    • 2016
  • Scaffolds are essential in bone tissue engineering, as they provide support to cells and growth factors necessary to regenerate tissue. In addition, they meet the mechanical function of the bone while it regenerates. Currently, the multiple methods for designing and manufacturing scaffolds are based on regular structures from a unit cell that repeats in a given domain. However, these methods do not resemble the actual structure of the trabecular bone which may work against osseous tissue regeneration. To explore the design of porous structures with similar mechanical properties to native bone, a geometric generation scheme from a reaction-diffusion model and its manufacturing via a material jetting system is proposed. This article presents the methodology used, the geometric characteristics and the modulus of elasticity of the scaffolds designed and manufactured. The method proposed shows its potential to generate structures that allow to control the basic scaffold properties for bone tissue engineering such as the width of the channels and porosity. The mechanical properties of our scaffolds are similar to trabecular tissue present in vertebrae and tibia bones. Tests on the manufactured scaffolds show that it is necessary to consider the orientation of the object relative to the printing system because the channel geometry, mechanical properties and roughness are heavily influenced by the position of the surface analyzed with respect to the printing axis. A possible line for future work may be the establishment of a set of guidelines to consider the effects of manufacturing processes in designing stages.