• Title/Summary/Keyword: Reaction Kinetics Model

Search Result 311, Processing Time 0.031 seconds

Kinetic Analysis for the Pyrolysis of Solid Refues Fuel Using Livestock Manure (축분 고형연료의 열분해 동역학 연구)

  • Jang, Eun-Suk;Song, Eunhye;Yoon, Jonghyuk;Kim, Young-Min
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.443-451
    • /
    • 2020
  • In this study, the physico-chemical properties and pyrolysis kinetics of livestock mature solid fuel were investigated to know its feasibility as a fuel. Ultimate and proximate analysis results showed that livestock mature solid fuel has high contents of volatile matter (64.94%), carbon (44.35%), and hydrogen (5.54%). The low heating value of livestock mature solid fuel (3880 kcal/kg) was also higher than the standard requirement of solid fuel (3000 kcal/kg). Thermogravimetic analysis results indicated that livestock mature solid fuel has three decomposition temperature regions. The first temperature zone (130~330 ℃) was consisted with the vaporization of extracts and the decomposition of hemicellulose and cellulose. The second (330~480 ℃) and third (550~800 ℃) temperature regions were derived from the decomposition of lignin and additional decomposition of carbonaceous materials, respectively. The activation energy derived from model free kinetic analysis results including Friedman, Flynn-Wall-Ozawa (FWO), and Kissinger-Akahira-Sunose (KAS) methods for the pyrolysis of livestock mature solid fuel was in the range of 173.98 to 525.79 kJ/mol with a conversion rate of 0.1 to 0.9. In particular, the activation energy increased largely at the higher conversion than 0.6. The kinetic analysis using a curve-fitting method suggested that livestock mature solid fuel was decomposed via a multi-step reaction which can be divided into five decomposition steps.

Simulation and Measurement of Degradation and Movement of Insecticide Ethoprophos in Soil (토양(土壤)중 살충제(殺蟲劑) ethoprophos의 분해성(分解性) 및 이동성(移動性)의 측정(測定)과 예측(豫測)에 관한 모델 연구(硏究))

  • Moon, Young-Hee;Kim, Yun-Tae;Kim, Young-Seok;Han, Soo-Kon
    • Korean Journal of Environmental Agriculture
    • /
    • v.12 no.3
    • /
    • pp.209-218
    • /
    • 1993
  • The behaviour of insectcide ethoprophos (O-ethyl S,S-propyl phosphorodithioate) in soil was investigated. In a laboratory study, the degradation of ethoprophos in soil followed first-order reaction kinetics. The half-life of the insecticide in the soil incubated with 10, 18 and $25^{\circ}C$ was 12.4, 5.5 and 2.5 days, respectively. Arrhenius activation energy was 73.8 KJ/mole. The half-life was 46.4, 17.6 and 6.9 day in the soil with 7, 14 and 19% of soil water content, respectively. The moisture dependence B value in empirical equation was 1.67. The adsorption isotherm for ethoprophos in the soil agreed with freundlich equation. The adsorption distribution coefficient (Kd) was 0.27. In a field study prepared in autumn with undisturbed soil column in a mini-lysimeter system, ethoprophos residues were largely distributed in the top $0{\sim}2cm$ soil layer and moved down to the top 6cm soil layer. Persistence of ethoprophos in field soil was correlated with variation in weather pattern during the period of experiments. The half-life of ethoprophos treated at March and October was about 17 and 5 days, respectively. The ethoprophos woil was degraded up to 90% at 37day after the both treatment. In persistence and mobility of ethoprophos in field soil, the observed data were reasonably corresponded with predicted data by some computer model of pesticide behaviour.

  • PDF

Kinetic and Statistical Analysis of Adsorption and Photocatalysis on Sulfamethoxazole Degradation by UV/$TiO_2$/HAP System (UV/$TiO_2$/HAP 시스템에서 Sulfamethoxazole의 흡착과 광촉매반응에 대한 동역학적 및 통계적 해석)

  • Chun, Suk-Young;Chang, Soon-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.5
    • /
    • pp.5-12
    • /
    • 2012
  • Antibiotics have been considered emerging compounds due to their continuous input and persistence in environment. Due to the limited biodegradability and widespread use of these antibiotics, an incomplete removal is attained in conventional wastewater treatment plants and relative large quantities are released into the environment. In this study, it was determined the adsorption and photocatalysis kinetics of antibiotics (Sulfamethoxazole, SMX) with various catalyst (Titanium dioxide; $TiO_2$, Hydroxyapatite; HAP) conditions under UV/$TiO_2$/HAP system. In addition, the statistical analysis of response surface methods (RSM) was used to determine the effects of operating parameters on UV/$TiO_2$/HAP system. $TiO_2$/HAP adsorbent were found to follow the pseudo second order reaction in the adsorption. In the result of applied intrapaticle diffusion model, the constants of reaction rate were $TiO_2$=$0.064min^{-1}$, HAP=$0.2866min^{-1}$ and $TiO_2$/HAP=$0.3708min^{-1}$, respectively.The result of RSM, term of regression analysis in analysis of variance (ANOVA) showed significantly p-value (p<0.05) and high coefficients for determination values($R^2$=96.2%, $R^2_{Adj}$=89.3%) that allowed satisfactory prediction of second order regression model. And the estimated optimal conditions for Y(Sulfamethoxazole removal efficiency, %) were $x_1$(initial concentration of Sulfamethoxazole)=-0.7828, $x_2$(amount of catalyst)=0.9974 and $x_3$(reation time)=0.5738 by coded parameters, respectively. According to the result of intraparticle diffusion model and photocatalysis experiments, it was shown that the $TiO_2$/HAP was more effective system than conventional AOPs(advanced oxidation processes, UV/$TiO_2$ system).

The Effect of Compost Application on Degradation of Total Petroleum Hydrocarbon in Petroleum-Contaminated Soil (유류오염 토양 내 석유계 탄화수소 화합물의 분해에 대한 퇴비의 시용 효과)

  • Kim, Sung Un;Kim, Yong Gyun;Lee, Sang Mong;Park, Hyean Cheal;Kim, Keun Ki;Son, Hong Joo;Noh, Yong Dong;Hong, Chang Oh
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.4
    • /
    • pp.268-273
    • /
    • 2015
  • BACKGROUND: Petroleum-contaminated soil from leaking above- and underground storage tanks and spillage during transport of petroleum products is widespread environmental problem in recent years. Application of compost may be the most promising, cost-effective, and eco-friendly technology for soil bioremediation because of its advantages over physical and chemical technology. The objective of this study was to evaluate effect of compost application on degradation of total petroleum hydrocarbon (TPH) in petroleum hydrocarbon-contaminated soil.METHOD AND RESULTS: An arable soil was artificially contaminated by diesel, and compost was applied at the different rate of 0, 10, 30, and 50 Mg/ha. Concentration of TPH in the soil decreased as application rate of compost increased. Degradation efficiency was highest at compost 30 Mg/ha; however, it slightly decreased with compost 50 Mg/ha. Kinetic modeling was performed to estimate the rates of chemical reaction. The correlation coefficient (R2) values for the linear plots using the second-order model were higher than those using the first-oder model. Compost 30 and 50 Mg/ha had the fastest TPH degradation rate in the second-order model. Change of microbial population in soil with compost application was similar to that of TPH. Microbial population in the soil increased as application rate of compost increased. Increasing microbial population in the contaminated soil corresponded to decreased in TPH concentration.CONCLUSION: Conclusively, compost application for soil bioremediation could be an effective response to petroleum hydrocarbon-contaminated soil. The increase in microbial population with compost suggested that compost application at an optimum rate might enhance degradation of TPH in soil.

Field Studios of In-situ Aerobic Cometabolism of Chlorinated Aliphatic Hydrocarbons

  • Semprini, Lewts
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.3-4
    • /
    • 2004
  • Results will be presented from two field studies that evaluated the in-situ treatment of chlorinated aliphatic hydrocarbons (CAHs) using aerobic cometabolism. In the first study, a cometabolic air sparging (CAS) demonstration was conducted at McClellan Air Force Base (AFB), California, to treat chlorinated aliphatic hydrocarbons (CAHs) in groundwater using propane as the cometabolic substrate. A propane-biostimulated zone was sparged with a propane/air mixture and a control zone was sparged with air alone. Propane-utilizers were effectively stimulated in the saturated zone with repeated intermediate sparging of propane and air. Propane delivery, however, was not uniform, with propane mainly observed in down-gradient observation wells. Trichloroethene (TCE), cis-1, 2-dichloroethene (c-DCE), and dissolved oxygen (DO) concentration levels decreased in proportion with propane usage, with c-DCE decreasing more rapidly than TCE. The more rapid removal of c-DCE indicated biotransformation and not just physical removal by stripping. Propane utilization rates and rates of CAH removal slowed after three to four months of repeated propane additions, which coincided with tile depletion of nitrogen (as nitrate). Ammonia was then added to the propane/air mixture as a nitrogen source. After a six-month period between propane additions, rapid propane-utilization was observed. Nitrate was present due to groundwater flow into the treatment zone and/or by the oxidation of tile previously injected ammonia. In the propane-stimulated zone, c-DCE concentrations decreased below tile detection limit (1 $\mu$g/L), and TCE concentrations ranged from less than 5 $\mu$g/L to 30 $\mu$g/L, representing removals of 90 to 97%. In the air sparged control zone, TCE was removed at only two monitoring locations nearest the sparge-well, to concentrations of 15 $\mu$g/L and 60 $\mu$g/L. The responses indicate that stripping as well as biological treatment were responsible for the removal of contaminants in the biostimulated zone, with biostimulation enhancing removals to lower contaminant levels. As part of that study bacterial population shifts that occurred in the groundwater during CAS and air sparging control were evaluated by length heterogeneity polymerase chain reaction (LH-PCR) fragment analysis. The results showed that an organism(5) that had a fragment size of 385 base pairs (385 bp) was positively correlated with propane removal rates. The 385 bp fragment consisted of up to 83% of the total fragments in the analysis when propane removal rates peaked. A 16S rRNA clone library made from the bacteria sampled in propane sparged groundwater included clones of a TM7 division bacterium that had a 385bp LH-PCR fragment; no other bacterial species with this fragment size were detected. Both propane removal rates and the 385bp LH-PCR fragment decreased as nitrate levels in the groundwater decreased. In the second study the potential for bioaugmentation of a butane culture was evaluated in a series of field tests conducted at the Moffett Field Air Station in California. A butane-utilizing mixed culture that was effective in transforming 1, 1-dichloroethene (1, 1-DCE), 1, 1, 1-trichloroethane (1, 1, 1-TCA), and 1, 1-dichloroethane (1, 1-DCA) was added to the saturated zone at the test site. This mixture of contaminants was evaluated since they are often present as together as the result of 1, 1, 1-TCA contamination and the abiotic and biotic transformation of 1, 1, 1-TCA to 1, 1-DCE and 1, 1-DCA. Model simulations were performed prior to the initiation of the field study. The simulations were performed with a transport code that included processes for in-situ cometabolism, including microbial growth and decay, substrate and oxygen utilization, and the cometabolism of dual contaminants (1, 1-DCE and 1, 1, 1-TCA). Based on the results of detailed kinetic studies with the culture, cometabolic transformation kinetics were incorporated that butane mixed-inhibition on 1, 1-DCE and 1, 1, 1-TCA transformation, and competitive inhibition of 1, 1-DCE and 1, 1, 1-TCA on butane utilization. A transformation capacity term was also included in the model formation that results in cell loss due to contaminant transformation. Parameters for the model simulations were determined independently in kinetic studies with the butane-utilizing culture and through batch microcosm tests with groundwater and aquifer solids from the field test zone with the butane-utilizing culture added. In microcosm tests, the model simulated well the repetitive utilization of butane and cometabolism of 1.1, 1-TCA and 1, 1-DCE, as well as the transformation of 1, 1-DCE as it was repeatedly transformed at increased aqueous concentrations. Model simulations were then performed under the transport conditions of the field test to explore the effects of the bioaugmentation dose and the response of the system to tile biostimulation with alternating pulses of dissolved butane and oxygen in the presence of 1, 1-DCE (50 $\mu$g/L) and 1, 1, 1-TCA (250 $\mu$g/L). A uniform aquifer bioaugmentation dose of 0.5 mg/L of cells resulted in complete utilization of the butane 2-meters downgradient of the injection well within 200-hrs of bioaugmentation and butane addition. 1, 1-DCE was much more rapidly transformed than 1, 1, 1-TCA, and efficient 1, 1, 1-TCA removal occurred only after 1, 1-DCE and butane were decreased in concentration. The simulations demonstrated the strong inhibition of both 1, 1-DCE and butane on 1, 1, 1-TCA transformation, and the more rapid 1, 1-DCE transformation kinetics. Results of tile field demonstration indicated that bioaugmentation was successfully implemented; however it was difficult to maintain effective treatment for long periods of time (50 days or more). The demonstration showed that the bioaugmented experimental leg effectively transformed 1, 1-DCE and 1, 1-DCA, and was somewhat effective in transforming 1, 1, 1-TCA. The indigenous experimental leg treated in the same way as the bioaugmented leg was much less effective in treating the contaminant mixture. The best operating performance was achieved in the bioaugmented leg with about over 90%, 80%, 60 % removal for 1, 1-DCE, 1, 1-DCA, and 1, 1, 1-TCA, respectively. Molecular methods were used to track and enumerate the bioaugmented culture in the test zone. Real Time PCR analysis was used to on enumerate the bioaugmented culture. The results show higher numbers of the bioaugmented microorganisms were present in the treatment zone groundwater when the contaminants were being effective transformed. A decrease in these numbers was associated with a reduction in treatment performance. The results of the field tests indicated that although bioaugmentation can be successfully implemented, competition for the growth substrate (butane) by the indigenous microorganisms likely lead to the decrease in long-term performance.

  • PDF

A Study on the Factors Affecting Removal of Chromium(VI) Using $TiO_{2}$ Photocatalyst in a Circular Type Reactor (순환식 반응기에서 $TiO_{2}$ 광촉매를 이용한 Chromium(VI)의 제거에 미치는 영향인자에 대한 연구)

  • Kim, Hyun-Yong;Cho, Il-Hyoung;Lee, So-Jin;Ki, Won-Ju;Lee, Hong-Keun
    • Journal of Environmental Health Sciences
    • /
    • v.25 no.3
    • /
    • pp.64-69
    • /
    • 1999
  • This study was carried out the removal of Cr(VI) which was known to the toxic pollutant in industry using the process of UV and TiO$_2$ photocatalyst in a circular type reactor. In this experiment, the series of photocatalytic process for the removal of Cr(VI) has been selected as a model reaction in a circular type reactor in order to obtain the basic data on the influence of various experimental parameters such as circulation flow rate, pH of solution, initial Cr(VI) light illumination and TiO$_2$ dosage, and salicylic acid concentration. The results of this study were as follows; 1. With both UV light illumination and TiO$_2$ present, Cr(VI) was more effectively eliminated than with either UV or TiO$_2$ alone. 2. As the circulation flow rate of solution increased, the removal efficiency of Cr(VI) was increased. However, over 2.4 l/min of circulation flow rate, the efficiency wa limited. 3. A increase in the photocatalytic removal of Cr(VI) was noticed with decreasing pH. 4. An increase in the photocatalytic removal of Cr(VI) was noticed with decreasing Initial Cr(VI) concentration and first order kinetics was observed from the result at different initial concentration of Cr(VI). 5. Photocatalytic removal efficiency of Cr(VI) increased with increasing TiO$_2$ dosage. However, over 1.0 g/l of TiO$_2$ dosage, the efficiency reached a plateau. 6. As low concentration of saliculic acid were added, there was an increase in the removal efficiency of Cr(VI). However, over 300 mg/l of salicylic acid, the efficiecy was decreased. It eas found that application of photocatalysis to water treatment that contains both Cr(VI) and salicylic acid was possible.

  • PDF

THE EFFECT OF THE SUPERSATURATED SOLUTIONS CONTAINING HIGH CONCENTRATIONS OF FLUORIDE ON SEEDED CRYSTAL GROWTH (고농도의 불소를 포함하는 과포화용액이 apatitic crystal growth에 미치는 영향)

  • Kwun, Jung-Won;Kum, Kee-Yeon;Lee, Seung-Jong;Jung, Il-Young;Lee, Chan-Young
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.2
    • /
    • pp.330-336
    • /
    • 1999
  • In biological systems, the mineral that forms hard tissue is of an apatitic nature, and hydroxyapatite($Ca_5OH(PO_4)_3$: HA) is generally considered as the prototype for such a mineral. Thus, the precipitation of HA, having biological implications, has been the subject of several investigations. Crystal growth studies using HA seeds in supersaturated solutions have enhanced our understanding of the process and mechanism involved in seeded crystal growth. From these studies, it has become apparent that the precipitation rate of HA onto the seed crystals depends on the various conditions, especially on the additives. The relation between the supersaturated solution containing fluoride and the process of HA crystal growth enhances the understanding of mechanism of HA crystal growth. Until recently, the studies have been on the crystal growth of enamel minerals and synthetic HA seeds in the supersaturated solution containing 1~2 ppm fluoride. The purpose of the present investigation is to study the effect that fluoride of high concentration has on the crystal growth kinetics of HA. In order to produce the composition found in the secretory enamel fluid, experimental solutions of 1mM Ca, 3mM P, and 100mM Tris as background electrolyte were used. Then this experimental solutions were added to 0, 2, 4, 6, 8, 10 ppm fluoride. The effect of fluoride at high concentrations on the precipitation was examined in a bench-top crystal growth model adopting a miniaturized reaction column. Chemical analysis was employed for characterization of working solutions before and after the experimentation. Remarkable findings were : 1) the amount of crystal growth was gradually accelerated as the fluoride concentration increased until 6 ppm, but decreased in 8 and 10 ppm fluoride; 2) the amount of fluoride ion consumed in crystal formation was constant despite the increase in fluoride concentration.

  • PDF

Catalytic Wet Oxidation of Azo Dye Reactive Black 5 (아조염료 Reactive Black 5 폐수의 촉매습식산화)

  • Suh, Il-Soon;Yoo, Shin-Suk;Ko, Mi-So;Jeong, Samuel;Jung, Cheol-Goo;Hong, Jeong-Ah;Yoon, Wang-Lai
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.259-267
    • /
    • 2010
  • The catalytic wet oxidations of the wastewater containing azo dye Reactive Black 5(RB5) with heterogeneous catalyst of CuO have been carried out to investigate the effects of temperature($190{\sim}230^{\circ}C$) and catalyst concentration(0.00~0.20 g/l) on the removals of colour and total organic carbon TOC. The wastewater colour was measured with spectrophotometer, and the oxidation rate was estimated with TOC. About 90% of colour was removed during 120 min in thermal degradation of the RB5 wastewater at $230^{\circ}C$, while TOC was not removed at all. As increasing reaction temperature and catalyst concentration, the removal rates of colour and TOC increased in the catalytic wet oxidations of RB5 wastewater. The effects of catalyst were already considerable even at 0.01 g CuO/l, while the removal rates of colour and TOC increased negligibly with increasing the catalyst concentration above 0.05 g CuO/l. The initial destruction rates of the wastewater colour have shown the first-order kinetics with respect to the wastewater colour. TOC changes during catalytic wet oxidations have been well described with the global model, in which the easily degradable TOC was distinguished from non-degradable TOC of the wastewater. The impacts of reaction temperature on the destruction rate of the wastewater colour and TOC could be described with Arrhenius relationship. Activation energies of the colour removal reaction in thermal degradation, wet oxidation, and catalytic wet oxidation(0.20 g CuO/l) of the RB5 wastewater were 108.4, 78.3 and 74.1 kJ/mol, respectively. The selectivity of wastewater TOC into the non-degradable intermediates relative to the end products in the catalytic wet oxidations of RB5 wastewater was higher compared to that in phenol wet oxidations.

Adsorption of Arsenic on Goethite (침철석(goethite)과 비소의 흡착반응)

  • Kim, Soon-Oh;Lee, Woo-Chun;Jeong, Hyeon-Su;Cho, Hyen-Goo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.177-189
    • /
    • 2009
  • Iron (oxyhydr)oxides commonly form as secondary minerals of high reactivity and large surface area resulting from alteration and weathering of primary minerals, and they are efficient sorbents for inorganic and organic contaminants. Accordingly, they have a great potential in industrial applications and are also of substantial interest in environmental sciences. Goethite (${\alpha}$-FeOOH) is one of the most ubiquitous and stable forms of iron (oxyhydr)oxides in terrestrial soils, sediments, and ore deposits, as well as a common weathering product in rocks of all types. This study focused on adsorption reaction as a main mechanism in scavenging arsenic using goethite. Goethite was synthesized in the laboratory to get high purity, and a variety of mineralogical and physicochemical features of goethite were measured and related to adsorption characteristics of arsenic. To compare differences in adsorption reactions between arsenic species, in addition, a variety of experiments to acquire adsorption isotherm, adsorption edges, and adsorption kinetics were accomplished. The point of zero charge (PZC) of the laboratory-synthesized goethite was measured to be 7.6, which value seems to be relatively higher, compared to those of other iron (oxyhydr)oxides. Its specific surface area appeared to be $29.2\;m^2/g$ and it is relatively smaller than those of other (oxyhydr)oxides. As a result, it was speculated that goethite shows a smaller adsorption capacity. It is likely that the affinity of goethite is much more larger for As(III) (arsenite) than for As(V) (arsenate), because As(III) was observed to be much more adsorbed on goethite than As(V) in equivalent pH conditions. When the adsorption of each arsenic species onto goethite was characterized in various of pH, the adsorption of As(III) was largest in neutral pH range (7.0~9.0) and decreased in both acidic and alkaline pH conditions. In the case of As(V), the adsorption appeared to be highest in the lowest pH condition, and then decreased with an increase of pH. This peculiarity of arsenic adsorption onto goethite might be caused by macroscopic electrostatic interactions due to variation in chemical speciation of arsenic and surface charge of goethite, and also it is significantly affected by change in pH. Parabolic diffusion model was adequate to effectively evaluate arsenic adsorption on goethite, and the regression results show that the kinetic constant of As(V) is larger than that of As(III).

Numerical Analysis of Unstable Combustion Flows in Normal Injection Supersonic Combustor with a Cavity (공동이 있는 수직 분사 초음속 연소기 내의 불안정 연소유동 해석)

  • Jeong-Yeol Choi;Vigor Yang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.91-93
    • /
    • 2003
  • A comprehensive numerical study is carried out to investigate for the understanding of the flow evolution and flame development in a supersonic combustor with normal injection of ncumally injecting hydrogen in airsupersonic flows. The formulation treats the complete conservation equations of mass, momentum, energy, and species concentration for a multi-component chemically reacting system. For the numerical simulation of supersonic combustion, multi-species Navier-Stokes equations and detailed chemistry of H2-Air is considered. It also accommodates a finite-rate chemical kinetics mechanism of hydrogen-air combustion GRI-Mech. 2.11[1], which consists of nine species and twenty-five reaction steps. Turbulence closure is achieved by means of a k-two-equation model (2). The governing equations are spatially discretized using a finite-volume approach, and temporally integrated by means of a second-order accurate implicit scheme (3-5).The supersonic combustor consists of a flat channel of 10 cm height and a fuel-injection slit of 0.1 cm width located at 10 cm downstream of the inlet. A cavity of 5 cm height and 20 cm width is installed at 15 cm downstream of the injection slit. A total of 936160 grids are used for the main-combustor flow passage, and 159161 grids for the cavity. The grids are clustered in the flow direction near the fuel injector and cavity, as well as in the vertical direction near the bottom wall. The no-slip and adiabatic conditions are assumed throughout the entire wall boundary. As a specific example, the inflow Mach number is assumed to be 3, and the temperature and pressure are 600 K and 0.1 MPa, respectively. Gaseous hydrogen at a temperature of 151.5 K is injected normal to the wall from a choked injector.A series of calculations were carried out by varying the fuel injection pressure from 0.5 to 1.5MPa. This amounts to changing the fuel mass flow rate or the overall equivalence ratio for different operating regimes. Figure 1 shows the instantaneous temperature fields in the supersonic combustor at four different conditions. The dark blue region represents the hot burned gases. At the fuel injection pressure of 0.5 MPa, the flame is stably anchored, but the flow field exhibits a high-amplitude oscillation. At the fuel injection pressure of 1.0 MPa, the Mach reflection occurs ahead of the injector. The interaction between the incoming air and the injection flow becomes much more complex, and the fuel/air mixing is strongly enhanced. The Mach reflection oscillates and results in a strong fluctuation in the combustor wall pressure. At the fuel injection pressure of 1.5MPa, the flow inside the combustor becomes nearly choked and the Mach reflection is displaced forward. The leading shock wave moves slowly toward the inlet, and eventually causes the combustor-upstart due to the thermal choking. The cavity appears to play a secondary role in driving the flow unsteadiness, in spite of its influence on the fuel/air mixing and flame evolution. Further investigation is necessary on this issue. The present study features detailed resolution of the flow and flame dynamics in the combustor, which was not typically available in most of the previous works. In particular, the oscillatory flow characteristics are captured at a scale sufficient to identify the underlying physical mechanisms. Much of the flow unsteadiness is not related to the cavity, but rather to the intrinsic unsteadiness in the flowfield, as also shown experimentally by Ben-Yakar et al. [6], The interactions between the unsteady flow and flame evolution may cause a large excursion of flow oscillation. The work appears to be the first of its kind in the numerical study of combustion oscillations in a supersonic combustor, although a similar phenomenon was previously reported experimentally. A more comprehensive discussion will be given in the final paper presented at the colloquium.

  • PDF