• Title/Summary/Keyword: Reaction Dynamics

Search Result 389, Processing Time 0.024 seconds

Numerical Modeling of Very High Frequency Multi Hollow Cathode PECVD (Very High Frequency Multi Hollow Cathode PECVD 장치의 수치모델링)

  • Joo, Jung-Hoon
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.5
    • /
    • pp.331-340
    • /
    • 2010
  • 3D fluid based numerical modelling is done for a VHF multi hollow cathode array plasma enhanced chemical vapor deposition system. In order to understand the fundamental characteristics of it, Ar plasma is analyzed with a condition of 40 MHz, 100 Vrf and 1 Torr. For hole array of 6 mm diameter and 20 mm inter-hole distance, plasma is well confined within the hole at an electrode gap of 10 mm. The peak plasma density was $5{\times}10^{11}#/cm^3$ at the center of the hole. When the substrate was assumed at ground potential, electron temperature showed a peak at the vicinity of the grounded walls including the substrate and chamber walls. The reaction rate of metastable based two step ionization was 10 times higher than the direct electron impact ionization at this condition. For $H_2$, the spatial localization of discharge is harder to get than Ar due to various pathways of electron impact reactions other than ionization.

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

A Study of NO Fmission Characteristics in a Non-premixed Counterflow Flame with $H_2/CO_2/Ar$ Blended-fuel (수소/이산화탄소/알곤 혼합 연료의 비예혼합 대향류 화염에서 NO 배출 특성 연구)

  • Lee, Kee-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.146-153
    • /
    • 2007
  • The detailed chemistry with reaction mechanism of GRI 2.11, which consists of 49 species and 279 elementary reactions, have been numerically conducted to investigate the flame structure and NO emission characteristics in a non-premixed counterflow flame of blended fuel of $H_2/CO_2/Ar$. The combination of $H_2,\;CO_2$, and Ar as fuel is selected to clearly display the contribution of hydrocarbon products to flame structure and NO emission characteristics due to the breakdown of $CO_2$. Radiative heat loss term is involved to correctly describe the flame dynamics especially at low strain rates. All mechanisms including thermal, $NO_2,\;N_2O$, and Fenimore are also taken into account to separately evaluate the effects of $CO_2$ addition on NO emission characteristics. The increase of added $CO_2$ quantity causes flame temperature to fall since at high strain rates diluent effect is prevailing and at low strain rates the breakdown of $CO_2$ produces relatively populous hydrocarbon products and thus the existence of hydrocarbon products inhibits chain branching. It is also found that the ratio of the contribution by Fenimore mechanism to that by thermal mechanism in the total mole production rate becomes much larger with increase in the $CO_2$ quantity and strain rate, even though the absolute quantity of NO production is deceased. Consequently, as strain rate and $CO_2$ quantity increase, NO production by Fenimore mechanism is remarkably augmented.

A New Detergentless Micro-Emulsion System Using Urushiol as an Enzyme Reaction System

  • Kim, John-Woo-Shik;Yoo, Young-Je
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.3
    • /
    • pp.369-375
    • /
    • 2001
  • Urushiol, a natural monomeric oil, was used to prepare a detergentless micro-emulsion with water and 2-propanol The formation of micro-emulsion was verified by conductivity measurements and dynamic light scattering. The conductivity data showed phase change dynamics, a characteristics of micro-emulsions, and subsequent dynamic light scattering study further confirmed the phenomenon. Average water droplet diameter was 10 nm to 500 nm when the molar ratio of 2-propanol ranged from 0.40 to 0.44 . Earlier studies were performed on toluene and hexane, in which the insoluble substrate in water phase was added to the solvents to be reacted on by enzymes. However, in the present urushiol system, urushiol was used as both solvent and substrate in the laccase polymerization of urushiol. The laccase activity in the system was examined using polymerization of urushiol. The laccase activity in the system was examined using syringaldezine as a substrate, and the activity increased rapidly near the molar ratio of 2-propanol at 0.4, where micro-emulsion started. The activity rose until 0.46 and fell dramatically thereafter. The study of laccase activity in differing mole fractions of 2-propanol showed the existence of an ‘optimal zone’, where the activity of laccase was significantly higher. In order to analyze urushiol polymerization by laccase, a bubble column reactor using a detergentless micro-emulsion system was constructed. Comparative study using other organic solvents systems were conducted and the 2-propanol system was shown to yield the highest polymerization level. The study of laccase activity at a differing mole fraction of 2-propanol showed the existence of an ‘optimal zone’ where the activity was significantly higher. Also, 3,000 cP viscosity was achieved in actual urushi processing, using only 1/100 level of laccase present in urushi.

  • PDF

Nutrient dynamics study of overlying water affected by peroxide-treated sediment

  • Haque, Niamul;Kwon, Sung-Hyun
    • Journal of Ecology and Environment
    • /
    • v.41 no.9
    • /
    • pp.235-245
    • /
    • 2017
  • Background: Loading of excess nutrient via bioremediation of polluted sediment to overlying water could trigger anoxia and eutrophication in coastal area. The aim of this research was to understand the changes of overlying water features such as dissolved oxygen (DO); pH; oxidation reduction potential (ORP); $chlorophyll-{\alpha}$ ($Chl-{\alpha}$); and nitrogen nutrients ammonia ($N-NH_4{^+}$), nitrate ($N-NO_3{^-}$), and nitrite ($N-NO_2^-$) when the sediment was not treated (control) and treated by calcium peroxide for 5 weeks. Methods: The water samples were analyzed for measuring physical and chemical properties along with the sediment analyzed by polymerase chain reaction (PCR) including denaturing gradient gel electrophoresis (DGGE) for identifying the phylogenetic affiliation of microbial communities. Results: Results showed that due to the addition of calcium peroxide in sediment, the overlying water exposed the rise of dissolve oxygen, pH, and ORP than control. Among the nitrogen nutrients, ammonia inhibition was higher in calcium peroxide treatment than control but in case of nitrate inhibition, it was reversed than control. $Chlorophyll-{\alpha}$ was declined in treatment column water by 30% where it was 20% in control column water. Actibacter and Salegentibacter group were detectable in the calcium-peroxide-treated sediment; in contrary, no detectable community ware found in control sediment. Both phylogenetic groups are closely related to marine microflora. Conclusions: This study emphasizes the importance of calcium peroxide as an oxygen release material. Interaction with peroxide proved to be enhancing the formation of microbial community that are beneficial for biodegradation and spontaneity of nutrient attenuation into overlying water.

Use of Adaptive Meshes in Simulation of Combustion Phenomena

  • Yi, Sang-Chul;Koo, Sang-Man
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.285-309
    • /
    • 1996
  • Non oxide ceramics such as nitrides of transition metals have shown significant potential for future economic impact, in diverse applications in ceramic, aerospace and electronic industries, as refractory products, abrasives and cutting tools, aircraft components, and semi-conductor substrates amid others. Combustion synthesis has become an attractive alternative to the conventional furnace technology to produce these materials cheaply, faster and at a higher level of purity. However he process os highly exothermic and manifests complex dynamics due to its strongly non-linear nature. In order to develop an understanding of this process and to study the effect of operational parameters on the final outcome, numerical modeling is necessary, which would generated essential knowledge to help scale-up the process. the model is based on a system of parabolic-hyperbolic partial differential equations representing the heat, mass and momentum conservation relations. The model also takes into account structural change due to sintering and volumetric expansion, and their effect on the transport properties of the system. The solutions of these equations exhibit steep moving spatial gradients in the form of reaction fronts, propagating in space with variable velocity, which gives rise to varying time scales. To cope with the possibility of extremely abrupt changes in the values of the solution over very short distances, adaptive mesh techniques can be applied to resolve the high activity regions by ordering grid points in appropriate places. To avoid a control volume formulation of the solution of partial differential equations, a simple orthogonal, adaptive-mesh technique is employed. This involves separate adaptation in the x and y directions. Through simple analysis and numerical examples, the adaptive mesh is shown to give significant increase in accuracy in the computations.

  • PDF

A Study on Designing Flash Hider to Shorten the Length of Small Arms (전장축소형 무화염 소염기 형상설계 연구)

  • Kim, Hyun-Jun;Lee, Joon-Ho;Chae, Je-Wook;Lee, Sung-Bae;Kim, In-Woo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.979-985
    • /
    • 2011
  • This paper includes that there are results of designing the flash hider and analyzing fluid dynamics of a front area of the barrel to shorten the length of small arms. Generally, the muzzle flash can be generated out of the barrel by the reaction between the oxygen in the air and unburned gunpowder contained in the propellant gas if a barrel is not long enough to burn gunpowder fully inside of the barrel. Though, the hugh muzzle flash, which is a characteristic of small arms with short barrel length, caused a soldier to aim at the target at night by making the soldier blind for a while and endangers his life by revealing firing position to enemies. Besides, the heat of muzzle flash can weaken the performance of thermal sights, which are attached to small arms for night battlefield. In this paper, flash hiders with several different shapes were designed for a newly developed 5.56mm caliber rifle with short barrel length. The performance of each flash hider to reduce the muzzle flash was compared theoretically and experimentally. Through the authorized test procedure, a highly efficient design of flash hider for reducing the muzzle flash was identified. The result of the paper can be helpful when designing flash hiders for small arms with short barrel length.

Review of Hazard Test of Combustion Gas and Exhaust Temperature of Acrylic Fire Protection Paint (아크릴계 내화도료 연소가스의 유해성 평가와 배기온도에 대한 고찰)

  • Jeon, Soo-Min;Kim, Jae-Jun
    • Fire Science and Engineering
    • /
    • v.31 no.4
    • /
    • pp.1-6
    • /
    • 2017
  • A fire resistance certification needs to be obtained before fire protection paint can be used in Korea. In the case of paint, the tests for certification are fire, gas hazard and bond strength. According to the hazard test standard of combustion gas, 16 mice are sacrificed every test. Therefore, there are ethical problems for the experimenter and legal problems for the laboratory. Accordingly, many alternatives are being assessed, such as combustion gas analysis, but they have not replaced animal testing yet. With gas hazard testing, the exhaust gas temperature can be measured. The property of the initial reaction of a specific fire paint can be characterized by this temperature. The purpose of this study was to consider the improvement point for a gas hazard test through comparative analysis of the exhaust temperature and the time of death of the mice.

Numerical Study of Chemical Performance of 30 tonf -class LRE Nozzle of KARI

  • Kang, Ki-Ha;Lee, Dae-Sung;Cho, Deok-Rae;Choi, H.S.;Choi, J.Y.
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.448-451
    • /
    • 2008
  • Three methods of nozzle flow analysis, frozen-equilibrium, shifting-equilibrium and non-equilibrium approaches, were used to rocket nozzle flow, those were coupled with the methods of computational fluid dynamics code. For a design of high temperature rocket nozzle, chemical equilibrium analysis which shares the same numerical characteristics with frozen flow analysis can be an efficient design tool for predicting maximum thermodynamic performance of the nozzle. Frozen fluid analysis presents the minimum performance of the nozzle because of no consideration for the energy recovery. On the other hand, the case of chemical-equilibrium analysis is able to forecast the maximum performance of the nozzle due to consideration for the energy recovery that is produced for the fast reaction velocity compared with velocity of moving fluid. In this study, using the chemical equilibrium flow analysis code that is combined the modified frozen-equilibrium and the chemical-equilibrium. In order to understand the thermochemical characteristic components and the accompanying energy recovery, shifting-equilibrium flow analysis was carried out for the 30 $ton_f$-class KARI liquid rocket engine nozzle together with frozen flow. The performance evaluation based on the 30 $ton_f$-class KARI LRE nozzle flow analyses will provide an understanding of the thermochemical process in the nozzle and performances of nozzle.

  • PDF

Dynamics of Bacterial Communities of Lamb Meat Packaged in Air and Vacuum Pouch during Chilled Storage

  • Wang, Taojun;Guo, Huiyuan;Zhang, Hao;Ren, Fazheng;Zhang, Ming;Ge, Shaoyang;Luo, Hailing;Zhao, Liang
    • Food Science of Animal Resources
    • /
    • v.39 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • In this study, the changes in microbial communities of lamb meat packaged in the air (plastic tray, PT) and in a vacuum pouch (VAC) were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) during the storage at $4^{\circ}C$. For the PT lamb, the total viable count (TVC) was $10^7CFU/g$ on Day 5, and the dominated bacteria were Pseudomonas fragi, P. fluorescens, and Acinetobacter spp. For the VAC lamb, the TVC was $10^7CFU/g$ on Day 9, and the dominated bacteria were lactic acid bacteria, including Carnobacterium divergens, C. maltaromaticum, and Lactococcus piscium. One strain of Pseudomonas spp. also appeared in VAC lamb. The relative abundance of Enterobacteriaceae in VAC lamb was higher than that PT lamb, indicating a more important role of Enterobacteriaceae in spoilage for VAC lamb than that of PT lamb. The microbial compositions changed faster in the lamb stored in a PT than that stored in a VAC, and microbial community compositions of the late storage period were largely different from those of the early storage period for both the conditions. The findings of this study may guide improve the lamb hygiene and prolong the shelf life of the lamb.