• Title/Summary/Keyword: Reaction Dynamics

Search Result 389, Processing Time 0.025 seconds

Inverse Dynamic Analysis of Flexible Multibody Systems with Closed-Loops

  • Lee, Byung-Hoon;Lee, Shi-Bok;Jeong, Weui-Bong;Yoo, Wan-Suk;Yang, Jin-Saeng
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.6
    • /
    • pp.693-698
    • /
    • 2001
  • The analysis of actuating forces (or torques) and joint reaction forces (or moments) are essential to determine the capacity of actuators, to control the system and to design the components. This paper presents an inverse dynamic analysis algorithm for flexible multibody systems with closed-loops in the relative joint coordinate space. The joint reaction forces are analyzed in Cartesian coordinate space using the inverse velocity transformation technique. The joint coordinates and the deformation modal coordinates are used as the generalized coordinates of a flexible multibody system. The algorithm is verified through the analysis of a slider-crank mechanism.

  • PDF

Assessment of the influence of coal combustion model and turbulent mixing rate in CFD of a 500 MWe tangential-firing boiler (500 MWe급 접선 연소 보일러 해석시 난류 혼합 속도 및 석탄 연소 모델의 영향 평가)

  • Yang, Joo-Hyang;Kang, Kie-Seop;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.69-72
    • /
    • 2015
  • Computational fluid dynamics (CFD) modeling of large-scale coal-fired boilers requires a complicated set of flow, heat transfer and combustion process models based on different degrees of simplification. This study investigates the influence of coal devolatilization, char conversion and turbulent gas reaction models in CFD for a tangential-firing boiler at 500MWe capacity. Devolatilization model is found out not significant on the overall results, when the kinetic rates and the composition of volatiles were varied. In contrast, the turbulence mixing rate influenced significantly on the gas reaction rates, temperature, and heat transfer rate on the wall. The influence of char conversion by the unreacted core shrinking model (UCSM) and the 1st-order global rate model was not significant, but the unburned carbon concentration was predicted in details by the UCSM. Overall, the effects of the selected models were found similar with previous study for a wall-firing boiler.

  • PDF

Simulation of Direct Methanol Fuel Cells Employing Computational Fluid Dynamics(CFD) (유체 전산모사를 통한 직접 메탄올 연료전지의 시뮬레이션)

  • Kim, Young-Jin;Lee, Tae-Hee;Oh, In-Hwan;Hong, Seong-An;Kim, Huk-Nyun;Ha, Heung-Yong
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.1
    • /
    • pp.28-35
    • /
    • 2003
  • A numerical analysis of electrochemical reaction and dynamics of the fluid flow in the channels of a DMFC separator was carried out by using a commercial Computational Fluid Dynamics(CFD) code fluent(ver.6.0). From the simulation work, many valuable informations were obtained in terms of distributions of velocity, pressure, temperature, concentration and current density over the flow field. And it was possible to optimize the flow field structure by using the simulation results. The simulation work using the Cm code was found very helpful in analysing the phenomena occurring in the fuel cell and optimizing the structures of electrodes and flow field.

Dynamics of OH Production in the Reaction of O(1D2) with Cyclopropane

  • Jang, Sungwoo;Jin, Sung Il;Kim, Hong Lae;Kim, Hyung Min;Park, Chan Ryang
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1706-1712
    • /
    • 2014
  • The OH($X^2{\Pi}$, ${\upsilon}^{\prime\prime}=0,1$) internal state distribution following the reaction of electronically excited oxygen atom ($O(^1D_2)$) with cyclo-$C_3H_6$ has been measured using laser-induced fluorescence, and compared with that following the reaction of $O(^1D_2)$ with $C_3H_8$. The overall characteristics of the OH internal energy distributions for both reactions were qualitatively similar. The population propensity of the ${\Pi}(A^{\prime})$ ${\Lambda}$-doublet sub-level suggested that both reactions proceeded via an insertion/elimination mechanism. Bimodal rotational population distributions supported the existence of two parallel mechanisms for OH production, i.e., statistical insertion and nonstatistical insertion. However, detailed analysis revealed that, despite the higher exoergicity of the reaction, the rotational distribution of the OH following the reaction of $O(^1D_2)$ with $C_3H_8$ was significantly cooler than that with cyclo-$C_3H_6$, especially in the vibrational ground state. This observation was interpreted as the effect of the flexibility of the insertion complex and faster intramolecular vibrational relaxation (IVR).

HBr Formation from the Reaction between Gas-phase Bromine Atom and Vibrationally Excited Chemisorbed Hydrogen Atoms on a Si(001)-(2 X1) Surface

  • Ree, J.;Yoon, S.H.;Park, K.G.;Kim, Y.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.8
    • /
    • pp.1217-1224
    • /
    • 2004
  • We have calculated the probability of HBr formation and energy disposal of the reaction exothermicity in HBr produced from the reaction of gas-phase bromine with highly covered chemisorbed hydrogen atoms on a Si (001)-(2 ${\times}$1) surface. The reaction probability is about 0.20 at gas temperature 1500 K and surface temperature 300 K. Raising the initial vibrational state of the adsorbate(H)-surface(Si) bond from the ground to v = 1, 2 and 3 states causes the vibrational, translational and rotational energies of the product HBr to increase equally. However, the vibrational and translational motions of product HBr share most of the reaction energy. Vibrational population of the HBr molecules produced from the ground state adsorbate-surface bond ($v_{HSi}$ =0) follows the Boltzmann distribution, but it deviates seriously from the Boltzmann distribution when the initial vibrational energy of the adsorbate-surface bond increases. When the vibration of the adsorbate-surface bond is in the ground state, the amount of energy dissipated into the surface is negative, while it becomes positive as vHSi increases. The energy distributions among the various modes weakly depends on surface temperature in the range of 0-600 K, regardless of the initial vibrational state of H(ad)-Si(s) bond.

Numerical Study on Steam-Methane Reaction Process in a Single Tube Considering Porous Catalyst (다공성 촉매를 고려한 단일튜브 내의 수증기-메탄 개질에 관한 수치해석 연구)

  • Moon, Joo Hyun;Lee, Seong Hyuk;Yoon, Kee Bong;Kim, Ji Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.56-62
    • /
    • 2014
  • The present study investigated numerically heat and mass transfer characteristics of a fixed bed reactor by using a computational fluid dynamics (CFD) code of Fluent (ver. 13.0). The temperature and species fraction were estimated for different porosities. For modeling of the catalyst in a fixed bed tube, catalysts were regarded as the porous material, and the empirical correlation of pressure drop based on the modified Eugun equation was used for simulation. In addition, the averaged porosities were taken as 0.545, 0.409, and 0.443 and compared with non-porous state. The predicted results showed that the temperature at the tube wall became higher than that estimated along the center line of tube, leading to higher hydrogen generation by the endothermic reaction and heat transfer. As the mean porosity increases, the hydrogen yield and the outlet temperature decreased because of the pressure drop inside the reformer tube.

FBR CFD Simulation of Steam Methanol Reforming Reaction using Intrinsic Kinetic Data of Copper-impregnated Hydrotalcite Catalyst (구리가 함침된 하이드로탈사이트 촉매의 고유 키네틱 데이터를 이용한 메탄올 수증기 개질반응의 고정층 반응기 CFD 시뮬레이션)

  • Jae-hyeok Lee;Dongil Shin;Ho-Geun Ahn
    • Journal of the Korean Institute of Gas
    • /
    • v.27 no.1
    • /
    • pp.78-85
    • /
    • 2023
  • Fixed-bed reactor Computational Fluid Dynamics (CFD) simulation of methanol steam reforming reaction was performed using the intrinsic kinetic data of the copper-impregnated hydrotalcite catalyst. The activation energy of the copper hydrotalcite catalyst obtained from the previous study results was 97.4 kJ/mol, and the pre-exponential was 5.904 × 1010. Process simulation was performed using the calculated values and showed a similar tendency to the experimental results. And the conversion rate according to the change of the reaction temperature (200 - 450 ℃) and the molar ratio of methanol and water was observed using the intrinsic kinetic data. In addition, mass and heat transfer phenomena analysis of a commercial reactor (I.D. 0.05 - 0.1m, Length 1m) was predicted through axial 2D Symmetry simulation using the power law model of the above kinetic constants.

Hydrogen Surface Coverage Dependence of the Reaction between Gaseous and Chemisorbed Hydrogen Atoms on a Silicon Surface

  • Ree, Jong-Baik;Chang, Kyung-Soon;Kim, Yoo-Hang
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.205-214
    • /
    • 2002
  • The reaction of gas-phase atomic hydrogen with hydrogen atoms chemisorbed on a silicon surface is studied by use of the classical trajectory approach. Especially, we have focused on the mechanism changes with the hydrogen surface coverage difference. On the sparsely covered surface, the gas atom interacts with the preadsorbed hydrogen atom and adjacent bare surface sites. In this case, it is shown that the chemisorption of H(g) is of major importance. Nearly all of the chemisorption events accompany the desorption of H(ad), i.e., adisplacement reaction. Although much less important than the displacement reaction, the formation of $H_2(g)$ is the second most significant reaction pathway. At gas temperature of 1800 K and surface temperature of 300 K, the probabilities of these two reactions are 0.750 and 0.065, respectively. The adsorption of H(g) without dissociating H(ad) is found to be negligible. In the reaction pathway forming $H_2$, most of the reaction energy is carried by $H_2(g)$. Although the majority of $H_2(g)$ molecules are produced in sub-picosecond, direct-mode collisions, there is a small amount of $H_2(g)$ produced in multiple impact collisions, which is characteristic of complex-mode collisions. On the fully covered surface, it has been shown that the formation of $H_2(g)$ is of major importance. All reactive events occur on a subpicosecond scale, following the Eley-Rideal mechanism. At gas temperature of 1800 K and surface temperature of 300 K, the probability of the $H_2(g)$ formation reaction is 0.082. In this case, neither the gas atom trapping nor the displacement reaction has been found.

The Role of Vibrational Coherency in Ultrafast Reaction Dynamics of PYP

  • Chosrowjan, Haik;Mataga, Noboru;Taniguchi, Seiji;Shibata, Yutaka;Hamada, Norio;Tokunaga, Fumio;Imamoto, Yasushi;Kataoka, Mikio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.122-125
    • /
    • 2002
  • Coherent oscillations in is fluorescence dynamics of W.-t. PYP and its site-directed mutants have been observed. Two oscillatory modes coupled with the ultrafast fluorescence due to the twisting of the excited chromophore were identified, a high ftequency mode (∼135 cm$\^$-1/) with ∼550 is damping time and a low frequency overdamped mode (-45 cm$\^$-1/) with ∼250 is damping time, respectively. Both modes disappear in the fluorescence dynamics of denatured PYP emphasizing the important role of the protein nanospace as the environment for photoreaction. The qualitative picture of fluorescence dynamics in site-directed mutants was rather similar to that in W.-t. PYP, i.e., similar oscillatory modes (∼130-140 cm$\^$-1/ and ∼40-70 cm$\^$-1/) have been observed. This indicates that the vibrational modes and electron-vibration couplings do not change dramatically due to the mutation though the damping time of low frequency mode a little decreases as the protein nanospace structure becomes looser and more disordered by mutation. On the other hand, in the case of some PYP analogues, the qualitative picture of fluorescence dynamics changes, showing the familiar picture of solvation effect whereas the oscillations are almost damped. Comparative analyses of these observations are presented.

  • PDF

Investigation of Stereo-dynamic Properties for the Reaction H+HLi by Quasi-classical Trajectory Approach

  • Wang, Yuliang;Zhang, Jinchun;Jiang, Yanlan;Wang, Kun;Zhou, Mingyu;Liang, Xiaorui
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.9
    • /
    • pp.2873-2877
    • /
    • 2012
  • Quasi-classical trajectory (QCT) calculations of H+HLi reaction have been carried out on a new potential energy surface of the ground state reported by Prudente et al. [Chem. Phys. Lett. 2009, 474, 18]. The four polarization-dependent differential cross sections have been carried out in the center of mass (CM) frame at various collision energies. The reaction probability for the depletion channel has been studied over a wide collision energy range. It has been found that the collision energy decreases remarkably reaction probability, which shows the expected behavior of the title reaction belonging to an exothermic barrierless reaction. The results are in good agreement with previous RMP results. The P(${\theta}_r$), P(${\phi}_r$) and P(${\theta}_r,\;{\phi}_r$) distributions, the k-k'-j' correlation and the angular distribution of product rotational vectors are presented in the form of polar plots. The average rotational alignment factor <$P_2(j{\prime}{\cdot}k)$> as a function of collision energy is also calculated. The results indicate that the collision energy has a great influence on the polarization of the product rotational angular momentum vector j'.