• Title/Summary/Keyword: Reaction Disk

Search Result 121, Processing Time 0.031 seconds

Comparison of Virulence Factors, Phylogenetic Groups and Ciprofloxacin Susceptibility of Escherichia coli Isolated from Healthy Students and Patients with Urinary Tract Infections in Korea

  • Park, Min;Park, Soon-Deok;Kim, Sa-Hyun;Woo, Hyun-Jun;Lee, Gyu-Sang;Kim, Hyun-Woo;Yang, Ji-Young;Cho, Eun-Hee;Uh, Young;Kim, Jong-Bae
    • Biomedical Science Letters
    • /
    • v.18 no.2
    • /
    • pp.146-151
    • /
    • 2012
  • Urinary tract infection (UTI) is one of the most common bacterial infections and is predominantly caused by uropathogenic Escherichia coli (UPEC). UPEC strains generally possess several genes encoding virulent factors, which are mostly adhesins, toxins, bacteriocin and siderophores. E. coli is composed of four main phylogenetic group (A, B1, B2, D) and virulent extra-intestinal strains mainly belong to groups B2 and D. Prescription of ciprofloxacin, a kind of fluoroquinolone group antibiotics, is increasing now a days, but resistance to this drug is also increasing. A total of 188 strains of E. coli were collected. Thirteen strains were collected from healthy students in 2011 and 175 strains from patients with urinary tract infection in 2010. Virulence factor genes (papC, fimG/H, sfaD/E, hlyA, cnf1, and usp) were amplified by polymerase chain reaction (PCR) methods for phylogenetic group (A, B1, B2, D) detection. Ciprofloxacin susceptibility test was performed by disk diffusion method. The identified virulence factors (VFs), phylogenetic groups and ciprofloxacin resistance in 13 E. coli strains isolated from healthy students were papC (15.4%), fimG/H (76.9%), sfaD/E (30.8%), hlyA (23.1%), cnf1 (23.1%), usp (7.7%), phylogenetic group A (23%), B1 (8%), B2 (46%), D (23%) and ciprofloxacin resistance (7.7%), while those of in 175 E. coli strains isolated from patients with UTI were papC (41.1%), fimG/H (92.5%), sfaD/E (30.3%), hlyA (10.3%), cnf1 (30.3%), usp (27.4%), phylogenetic group A (9.1%), B1 (5.1%), B2 (60.6%), D (25.1%) and ciprofloxacin resistance (29.7%). In this study, 10 out of 13 E. coli strains (76.9%) from healthy students were found to possess more than one virulence factor associated with adhesion. In addition, one E. coli strain isolated from healthy students who had never been infected with UPEC showed ciprofloxacin resistance. According to these results between the virulence factors and phylogenetic groups it was closely associated, and UPEC strains isolated from patients showed high level of ciprofloxacin resistance.

Effect of irradiation and LDPE content on crystal formation of PP (PP의 결정형성에 대한 조사가교와 LDPE 함량의 영향)

  • Dahal, Prashanta;Kim, Youn Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.6
    • /
    • pp.4039-4045
    • /
    • 2014
  • The crystallization behavior of irradiated polypropylene (PP) and the blend is an important parameter for polymer processing. Blends of PP/low density polyethylene (LDPE) with different LDPE contents were prepared by melt mixing in a twin screw extruder. The effect of the LDPE content on the irradiation effectiveness of the PP/LDPE blend with trimethylolpropane-trimetacrylate (TMPTMA) as a crosslinking co-agent was investigated in conjunction with the LDPE loading in the blend. The non-isothermal crystallization and crystal structure were measured by DSC, X-ray diffraction (XRD), and polarized optical microscopy (POM). A decrease in the melting temperature of PP was observed due to irradiation, which may be due to the PP chain scissioning effect of irradiation. The Ozawa component n represents a rod shaped, disc shaped and sphere-shaped geometry of the crystal if the value corresponds to 2, 3 and 4, respectively. Based on Ozawa analysis, the values of n were 3.8 and 2.3 for the pure PP and PP blends with 30 wt% LDPE, respectively. The fact that the crystal geometry of PP changed from spherical to disc and rod shaped was confirmed by Ozawa analysis and POM. The ${\beta}$ form XRD peak of the PP/LDPE blend at $16.1^{\circ}$ disappeared after irradiation due to the crosslinking reaction.

$\textrm{CO}_2$ Gas Sensor Based on $\textrm{Li}_2\textrm{ZrO}_3$ System ($\textrm{Li}_2\textrm{ZrO}_3$ 계를 이용한 $\textrm{CO}_2$ 가스 센서)

  • Park, Jin-Seong;Kim, Si-Uk;Lee, Eun-Gu;Kim, Jae-Yeol;Lee, Hyeon-Gyu
    • Korean Journal of Materials Research
    • /
    • v.9 no.9
    • /
    • pp.896-899
    • /
    • 1999
  • A carbon dioxide gas sensor was studied as a function of temperature and $CO_2$concentration in the Li$_2$ZrO$_3$ system. Lithium zirconate(Li$_2$ZrO$_3$) was synthesized by the heat-treatment of zirconia(ZrO$_2$)and Lithium carbonate(Li$_2$CO$_3$). The specimens were prepared both as bulk disk, 10mm in diameter and 1.0mm thickness, and thick films on an alumina substrate. Lithium zirconate readily responded to $CO_2$concentration from 0.1% to 100% in the range of 45$0^{\circ}C$ to $650^{\circ}C$. The sensitivity to $CO_2$ was dependent on the measuring temperature. Lithium zirconate(Li$_2$ZrO$_3$) decomposes into Li$_2$CO$_3$ and ZrO$_2$after the reaction with $CO_2$in the range of 45$0^{\circ}C$ to $650^{\circ}C$. Li$_2$CO$_3$ changes into Li$_2$O and $CO_2$ above $650^{\circ}C$. The material showed difficulty with reversibility and recovery. The optimum temperature for the highest sensitivity is around 55$0^{\circ}C$.

  • PDF

Molecular Characteristics of Extended-Spectrum β-Lactamase Genes in Clinical Isolates of Escherichia coli and Klebsiella pneumoniae (임상검체에서 분리된 Escherichia coli와 Klebsiella pneumoniae의 Extended-Spectrum β-Lactamase 유전자형 및 분자유전학적 특성)

  • Chung, Kyung-Suk
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.38 no.1
    • /
    • pp.26-33
    • /
    • 2006
  • Recently, the rapid increase in extended-spectrum ${\beta}$-lactamase (ESBL) producing clinical isolates has become a serious problem. In this study, the epidemiologic features and molecular characteristics of ESBL among clinical isolates of Escherichia coli and Klebsiella pneumoniae, antibiotic susceptibility testing, genotype of the ESBL and patterns of chromosomal DNA from PFGE (pulsed field gel electrophoresis) were observed. A total of 53 ESBL-producing clinical isolates (30 of E. coli and 23 of Klebsiella pneumoniae) were collected from two university hospitals in the period of June to July in 2002 and 2003 respectively. The antibiotic resistance frequency of those 53 strains was tested by the disk agar diffusion method with the result that all the strains were resistant to cephalothin. To other antibiotics, the resistance rates of E. coli (30 isolates) were in order of ceftazidime (90.0%), cefotaxime and aztreonam (respectively 83.3%). Also, the resistance rates of K. pneumoniae (23 isolates) were in order of aztreonam (78.3%), ceftazidime (73.9%) and cefotaxime (65.3%). Also the sensitivity of ceftazidime-clavulanic acid were 100% in E. coli and 95.7% in K. pneumoniae. And the sensitivity of cefotaxime-clavulanic acid was 96.7% in E. coli and 91.3% in K. pneumoniae. The types of the ESBL genes were determined by using polymerase chain reaction (PCR). Among the 30 isolates of ESBL-producing E. coli, 6 (20.0%) have SHV only, 5 (16.7%) have TEM only and, 18 (60.0%) have both of TEM and SHV. Among the 23 isolates of ESBL-producing K. pneumoniae, 7 (30.4%) have SHV only, 2 (8.7%) have TEM only, and 14 (60.9%) have both of TEM and SHV. These results show that 52 strains, with only one exception, were confirmed as either TEM or SHV. The patterns of Xba I-digested chromosomal DNA of ESBL-producing E. coli and K. pneumoniae isolates were analyzed by PFGE. PFGE patterns of E. coli and K. pneumoniae were multiclonal, but many strains were grouped into a few types. Therefore, it seems that there were clonal outbreaks or possible horizontal spread. In conclusion, the TEM and SHV ${\beta}$-lactamase are most widely spread in E. coli and K. pneumoniae in Korea. As these types are usually carried by plasmids, the spread of these ${\beta}$-lactamase genes could compromise the future usefulness of third generation cephalosporins for the treatment of infections caused by E. coli and K. pneumoniae.

  • PDF

Study on the Methicillin-resistant Gene Distribution of Staphylococci Isolated from Dogs and Cats (개와 고양이에서 분리된 메티실린 내성 포도상구균의 내성인자 분포조사)

  • Pak, Son-Il
    • Journal of Veterinary Clinics
    • /
    • v.20 no.3
    • /
    • pp.302-307
    • /
    • 2003
  • Although, in human medicine, strains of methicillin-resistant staphylococi have become the most important causative agents of nosocomial infections, studies on the small animals are very. limited. The aim of this study was to determine mecA gene and susceptibility to antibiotics of staphylococci strains isolated from clinically ill or healthy dogs and cats, during the period August 2002-July 2003. A total of 136 staphylococci (87 coagulase-positive and 49 coagulase-negative) were investigated for antibiotic resistance, using disk diffusion and minimum inhibitory concentration (MIC) test. The mecA gene was detected using the polymerase chain reaction. The isolates belonged to the species S. aureus (53 isolates), S. intermedius (34 isolates), S. epidermidis (26 isolates) and other coagulase-negative staphylococci (CNS, 23 isolates). Of the 136 isolates, 43 (31.6%) were mecA-positive and the frequency of the ,presence of mecA gene varied among the different species. All S. aureus strains were mecA-negative and were found to be susceptible, with an oxacillin MIC $\leq$1 $\mu\textrm{g}$/ml. Five (13.6%) isolates of 36 that exhibited oxacillin resistance on the MIC testing were found to be mecA-negative, suggesting not all mecA-positive strains may be an oxacillin resistant. However, the mecA presence of the strains was correlated with high oxacillin resistance: 71.4% (10 isolates of 14; P < 0.001) for mecA-positive S. intermedius and 72.4% (21 isolates of 29; P < 0.001) for mecA-positive CNS isolates. About 69% (94 isolates of 136) showed resistance to at least one drug, and 22.8% (31 isolates) were resistant to four or more different drug classes. Resistance (36 isolates, 71.7%) to penicillin G was a common finidng. This study suggest that the mecA-positive staphylococci are prevalent in small animals, and selection of antibiotics to treat infections caused by mecA-positive staphylococci may be very limited because of multi-drug resistance.

Effect of Flow Rates of Feed and Sweep Gas on Oxygen Permeation Properties of Ba0.5Sr0.5Co0.8Fe0.2O3-δ Membrane (공급가스 및 스윕가스 유량에 따른 Ba0.5Sr0.5Co0.8Fe0.2O3-δ 분리막의 산소투과특성)

  • Park, Se Hyung;Sonn, Jong Suk;Lee, Hong Joo;Park, Jung Hoon
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.407-411
    • /
    • 2015
  • Dense ceramic membranes have been prepared using the commercial perovsikite $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$, powders synthesized by the solid state reaction method. The as-synthesized powders were compressed into disks with 1.0 mm of thickness and the disk was sintered at $1,100^{\circ}C$ for 2 hr. The oxygen permeation flux of $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{3-{\delta}}$ membrane increased with the increasing temperature and oxygen partial pressure. The activation energy for oxygen permeation was increased with the increasing oxygen partial pressure. Oxygen permeation flux at $950^{\circ}C$ were measured at various flow rates of feed and sweep gas. It has been demonstrated that oxygen permeability increased at elevated flow rates of both gases, but the sweep gas is more influential.

Analysis of Antibiotic Resistant Patterns in Conjugant and Transformant of Three ESBL gene Harboring Klebsiella pneumoniae (세 가지의 ESBL 유전자를 가지고 있는 Klebsiella pneumoniae의 유전자접합체와 헝질전환체의 항생제내성분석)

  • Kim, Yun-Tae
    • Journal of Life Science
    • /
    • v.17 no.10
    • /
    • pp.1426-1433
    • /
    • 2007
  • To investigate the antibiotic resistant patterns of the bacteria producing ESBL, we isolated one organism of Klebsiella pneumoniae from a clinical laboratory in Busan. The organism that produces ESBL gene was detected by double disk synergy test and the presence of three ESBL genes (TEM-1, SHV-12, CTX-M-15) was confirmed by polymerase chain reaction and DNA sequencing analysis. To analyse the characteristics of three ESBL genes, we performed transconjugation, transformation and cloning experiment with the organism. The MIC of Klebsiella pneumoniae was revealed that ceftazidime, cefotaxime and ceftriaxone were $256\;{\mu}g/ml,\;128\;{\mu}g/ml\;and\;128\;{\mu}g/ml$ respectively. The MIC of conjugant (E. coli $RG176^{Na(r)}$) af was revealed that ceftazidime, cefotaxime and ceftriaxone were $256\;{\mu}g/ml,\;64\;{\mu}g/ml\;and\;128\;{\mu}g/ml$ respectively. The MIC of transformant (E. cofi $DH5{\alpha}$) was revealed that ceftazidime, cefotaxime and ceftriaxone were $128\;{\mu}g/ml,\;32\;{\mu}g/ml,\;and\;32\;{\mu}g/ml$ respectively, The MIC of cloned organism of SHV-12 gene (E. coli $DH5{\alpha}$) was revealed that ceftazidime, cefotaxime and ceftriaxone were $128\;{\mu}g/ml,\;8\;{\mu}g/ml,\;and\;32\;{\mu}g/ml$ respectively. The results indicated that MIC of conjugant was higher than MIC of transformant and also SHV-12 gene were not resistant against cefotaxime antibiotic.

Characteristics of Coagulase-negative Staphylococci Isolates from Dental Clinic Environments in Busan, Korea (부산지역 치과환경에서 분리된 coagulase-negative staphylococci의 특성)

  • Jung, Hye-In;Jung, So Young;Park, Indal;Bae, Il Kwon
    • Journal of Life Science
    • /
    • v.26 no.2
    • /
    • pp.220-225
    • /
    • 2016
  • Coagulase-negative staphylococci (CNS) have recently become the bacteria most frequently found in clinical infections. The aim of this study was to investigate the prevalence, antimicrobial susceptibilities, and molecular characteristics of CNS isolates from dental clinic environments in Busan, Korea. One hundred and fifty-four samples were collected from 10 dental clinics and dental hospitals in Busan from December 2014 to January 2015. Species were identified by matrix-assisted laser desorption/ionization–time-of-flight. Antimicrobial susceptibility was determined by disk diffusion methods. A polymerase chain reaction was performed to detect mecA, mupA gene, and SCCmec types. Of the 154 samples, 10(6.5%) isolates were identified as CNS (5 Staphylococcus epidermidis, 2 Staphylococcus capitis, 2 Staphylococcus, and 1 Staphylococcus haemolyticus). Among the 10 isolates, 6 were resistant to penicillin, 5 were resistant to gentamicin, 3 were resistant to tetracycline, and 2 were resistant to cefoxitin and erythromycin. However, clindamycin, ciprofloxacin, teicoplanin, and trimethoprim-sulfamethoxazole resistant isolates were not present. Genes encoding mecA were detected in 4 (2 S. warneri and 2 S. haemolyticus) isolates, and mupA in 1 (S. epidermidis) isolate. One methicillin-resistant CNS (S. warneri) isolate was determined as being of the SCCmec type I. It is concluded that CNS resistant to various antimicrobial agents was widely distributed in dental clinic environments in Korea.

Anti-Oral Microbial Activity and Anti-Inflammatory Effects of Rosmarinic Acid in Lipopolysaccharide-Stimulated MC3T3-E1 Osteoblastic Cells on a Titanium Surface

  • Jeong, Moon-Jin;Lim, Do-Seon;Heo, Kyungwon;Jeong, Soon-Jeong
    • Journal of dental hygiene science
    • /
    • v.20 no.4
    • /
    • pp.221-229
    • /
    • 2020
  • Background: The purpose of this study was to investigate the anti-oral microbial activity and anti-inflammatory effects of rosmarinic acid (RA) in lipopolysaccharide (LPS)-stimulated MC3T3-E1 osteoblastic cells on a titanium (Ti) surface during osseointegration, and to confirm the possibility of using RA as a safe natural substance for the control of peri-implantitis (PI) in Ti-based dental implants. Methods: A disk diffusion test was conducted to confirm the antimicrobial activity of RA against oral microorganisms. In order to confirm the anti-inflammatory effects of RA, inflammatory conditions were induced with 100 ng/ml of LPS in MC3T3-E1 osteoblastic cells on the Ti surface treated with or without 14 ㎍/ml of RA. The production of nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface was confirmed using an NO assay kit and PGE2 enzyme-linked immunosorbent assay kit. Reverse transcription polymerase chain reaction and western blot analysis were performed to confirm the expression of interleukin (IL)-1β and tumor necrosis factor (TNF)-α in total RNA and protein. Results: RA showed weak antimicrobial effects against Streptococcus mutans and Escherichia coli, but no antimicrobial activity against the bacteria Aggregatibacter actinomycetemcomitans and the fungus Candida albicans. RA reduced the production of pro-inflammatory mediators, NO and PGE2, and proinflammatory cytokines, TNF-α and IL-1β, in LPS-stimulated MC3T3-E1 osteoblastic cells on the Ti surface at the protein and mRNA levels. Conclusion: RA not only has anti-oral microbial activity, but also anti-inflammatory effects in LPS-stimulated MC3T3-E1 osteoblasts on the Ti surface, therefore, it can be used as a safe functional substance derived from plants for the prevention and control of PI for successful Ti-based implants.

Wastewater Treatment by using a Rotating Photocatalitic Oxidation Disk System (회전광촉매 시스템에 의한 폐수처리)

  • Chung, Ho Jin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.497-502
    • /
    • 2009
  • The wastewater treatment by photocatalyst decomposes pollutants directly in water, and it is easy to decompose indecomposable organics and inorganic. and Especially, it has an advantage that there is no secondary production of pollutants. However, there will be many problems which are generated depending on the type of photocatalyst. The type of rotating photocatalyst minimizes previous problems, and advanced oxidation processes is possible by the application of rotating disc method. The consideration of the characteristics about various designs and operation factors is needed for the application of rotating photocatalyst system. In this study, rotating photocatalyst was manufactured for rotating disc method by fixing of $TiO_2$. The operation factors were derived for the wastewater treatment by the reaction of rotating photocatalyst. The contained quantity of $TiO_2$ was limited about 70%. The more the contained quantity of $TiO_2$ was increased, the more the treatment rate was continually increased. The optimum rotating photocatalyst was R4, and the contained quantity of $TiO_2$ was 36.8%. The more the exposed amount of UV is increased, the more the decomposition effect of TCODcr was continually increased. However, the adequate strength of light source must be determined by the consideration of economical efficiency. The more the speed of rotating photocatalyst is increased, the more treatment efficiency was increased. When UV lamp was not submerged in reactor, the wastewater treatment was efficient in the order of the depth of water 50%, 30%, 10%, 70%, 100%. This study is a basic research for the development of a system which treats organics in solar light.