• Title/Summary/Keyword: Reaction Control System

Search Result 744, Processing Time 0.029 seconds

A study on development of 1kW SOFC test system (1kW급 연료전지 평가시스템 개발에 관한 연구)

  • Hwang, Hyun Suk;Lee, Sanghoon;Lee, Juyoung
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.3
    • /
    • pp.24-27
    • /
    • 2016
  • In this study, a 1kW Solid Oxide Fuel Cell(SOFC) test system was developed. A SOFC is the most promising power system to provide the higher efficient(over 50%) for house application area(1~10kW). To develop the optimized test system, the temperature control module that controls the preprocess and reaction condition, the flow control module that controls of the mass of reactants, and the electric loader that tests the discharge performance condition, etc. The temperature control module was designed to provide the high control resolution(under $1^{\circ}C$ at $750^{\circ}C$ of operating temperature) using K-type thermal couple. The flow control module was designed control blower and heater precisely using the phase control method. And the electric loader is designed that provide CV, CC, CR discharge mode and minimized the operating error adopting the independent DC-DC converter on analog input and output module. The performance of the developed SOFC test system showed that the accuracy of stack voltage was 0.15% at 80V and stack current was 0.1% at 100A.

Development of a Temperature Controller for Microwave-assisted Digestion System for Agricultural Samples (농식품 시료 전처리를 위한 마이크로웨이브 분해기용 온도 제어장치 개발)

  • Mo, Chang-Yeon;Kim, Gi-Young;Kim, Hak-Jin;Kim, Yong-Hun;Yang, Kil-Mo;Lee, Kang-Jin
    • Journal of Biosystems Engineering
    • /
    • v.34 no.5
    • /
    • pp.371-376
    • /
    • 2009
  • Microwave digestion is a preferred pretreatment method for agricultural samples because of its quick chemical reaction and minimum loss of analytes. In this research, a feedback temperature controller was developed to control the temperature inside a vessel for the microwave-assisted digestion system. An existing industrial microwave oven was fitted with the temperature controller for controlling inside temperature of the vessel. Four control methods, On/Off, proportional (P), proportional integral (PI), and proportional integral derivative (PID) were used and compared. Experimental results showed that PID control produced best temperature control performance. The PID controller could maintain the temperature of water sample and rice sample in the digestion system with error range of $-2.5{\sim}3.3^{\circ}C$ and $-1.9{\sim}0.5^{\circ}C$ at set temperature of $170^{\circ}C$, respectively.

Aeration control based on respirometry in a sequencing batch reactor (호흡률에 기반한 연속회분식반응조의 포기공정 제어)

  • Kim, Donghan;Kim, Sunghong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.32 no.1
    • /
    • pp.11-18
    • /
    • 2018
  • As the sequencing batch reactor process is a time-oriented system, it has advantages of the flexibility in operation for the biological nutrient removal. Because the sequencing batch reactor is operated in a batch system, respiration rate is more sensitive and obvious than in a continuous system. The variation of respiration rate in the process well represented the characteristics of biological reactions, especially nitrification. The respiration rate dropped rapidly and greatly with the completion of nitrification, and the maximum respiration rate of nitrification showed the activity of nitrifiers. This study suggested a strategy to control the aeration of the sequencing batch reactor based on respirometry. Aeration time of the optimal aerobic period required for nitrification was daily adjusted according to the dynamics of respiration rate. The aeration time was mainly correlated with influent nitrogen loadings. The anoxic period was extended through aeration control facilitating a longer endogenous denitrification reaction time. By respirometric aeration control in the sequencing batch reactor, energy saving and process performance improvement could be achieved.

Effect of reaction temperature and time on the formation of calcite precipitation of recycled concrete aggregate (RCA) for drainage applications

  • Boo Hyun Nam;Jinwoo An;Toni Curate
    • Geomechanics and Engineering
    • /
    • v.33 no.1
    • /
    • pp.65-75
    • /
    • 2023
  • Recycled concrete aggregate (RCA) is widely used as a construction material in road construction, concrete structures, embankments, etc. However, it has been reported that calcite (CaCO3) precipitation from RCA can be a cause of clogging when used in drainage applications. An accelerated calcite precipitation (ACP) procedure has been devised to evaluate the long-term geochemical performance of RCA in subsurface drainage systems. While the ACP procedure was useful for the French Drain application, there remained opportunities for improvement. In this study, key factors that control the formation of calcite precipitation were quantitatively evaluated, and the results were used to improve the current prototype ACP method. A laboratory parametric study was carried out by investigating the effects of reaction temperature and time on the formation of calcite precipitation of RCA, with determining an optimum reaction temperature and time which maximizes calcite precipitation. The improved ACP procedure was then applied to RCA samples that were graded for Type I Underdrain application, to compare the calcite precipitation. Two key findings are (1) that calcite precipitation can be maximized with the optimum heating temperature (75℃) and time (17 hours), and (2) the potential for calcite precipitation from RCA is not as significant as for limestone. With the improved ACP procedure, the total amount of calcite precipitation from RCAs within the life cycle of a drain system can be determined when RCAs from different sources are used as pipe backfill materials in a drain system.

Development of the Automatic Knee Joint Control System for a Knee-Ankle-Foot Orthosis Using an Electromechanical Clutch (전자-기계식 클러치를 이용한 장하지 보조기용 무릎관절 자동 제어 장치의 개발)

  • 이기원;강성재;김영호;조강희
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.4
    • /
    • pp.359-368
    • /
    • 2001
  • A new knee-ankle-foot-orthosis(KAFO) which uses an automatically-controlled electromechanical wrap spring clutch for the knee joint was developed in the present study. It was found that the output voltage from the foot switches of the developed KAFO was proportionally increased with respect to the applied load. The output voltage from the infrared sensor also decreased as the knee flexion angle increased. The knee joint system for the new KAFO weighs only 780g lighter than any other commercially available developed system. In addition, the solenoid reduces the reaction time for the automatic control of the knee joint. The static torque of the clutch was measured for three persons, and it satisfied the normal knee extension moment during the pre-swing. Three-dimensional gait analyses for three different gait patterns (normal gait, locked-knee gait, controlled-knee gait) from five normal subjects were conducted. Controlled-knee gait showed the maximum knee flexion angle of 40.56$\pm9.55^{\circ}$ and the maximum knee flexion moment of 0.20$\pm$0.07Nm/kg at similar periods in the normal gait. Our KAFO system satisfies both stability during stance phase and free knee flexion during the swing phase at the proper period during the gait cycle. Therefore, our KAFO system would be very useful in various low extremity orthotic applications.

  • PDF

Attitude Control of a Quad-rotor using CMG (CMG를 이용한 쿼드-로터의 자세제어)

  • Oh, Kyung-Hyun;Choi, Ho-Lim
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.695-700
    • /
    • 2014
  • In this paper, we utilize the CMG's momentum bias to control the roll/pitch attitude of the Quad-rotor. While the previous control approaches have used the thrust control approach, we design and add a new momentum controller (using CMG) in order to improve the transient response over the existing methods. The focal point of this paper is the design of a controller for a Quad-rotor's attitude using CMG. This leads to other tasks such as an identification of the model's parameters and mathematical nonlinear modeling. Then, the previous thrust controller is designed based on the linearized model. Finally, the overall system with our designed controller is implemented and tested in real time to show that the Quad-rotor is kept in a good balanced position faster than the traditional thrust-only control approach.

Control System of Service Robot for Hospital (병원용 서비스 로봇의 제어시스템)

  • 박태호;최경현;이석희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.540-544
    • /
    • 2001
  • This paper addresses a hybrid control architecture for the hospital service robot, SmartHelper. In hybrid architecture, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the hybrid architecture is verified.

  • PDF

Study on Development of Hospital Service Robot SmartHelper (병원용 서비스 로봇 SmartHelper 개발에 관한 연구)

  • Choi, Kyung-Hyun;Lee, Seok-Hee;Park, Tae-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.325-329
    • /
    • 2001
  • This paper addresses a control architecture for the hospital service robot, SmartHelper. With a sensing-reasoning-acting paradigm, the deliberation takes place at planning layer while the reaction is dealt through the parallel execution of operations. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment. The deliberative controller accomplishes four functions which are path generation, selection of navigation way, command and monitoring. The reactive controller uses fuzzy and potential field method for robot navigation. Through simulation under a virtual environment IGRIP, the effectiveness of the control architecture is verified.

  • PDF

Development of Optimal Chlorination Model and Parameter Studies (최적 염소 소독 모형의 개발 및 파라미터 연구)

  • Kim, Joonhyun;Ahn, Sooyoung;Park, Minwoo
    • Journal of Environmental Impact Assessment
    • /
    • v.29 no.6
    • /
    • pp.403-413
    • /
    • 2020
  • A mathematical model comprised with eight simultaneous quasi-linear partial differential equations was suggested to provide optimal chlorination strategy. Upstream weighted finite element method was employed to construct multidimensional numerical code. The code was verified against measured concentrations in three type of reactors. Boundary conditions and reaction rate were calibrated for the sixteen cases of experimental results to regenerate the measured values. Eight reaction rate coefficients were estimated from the modeling result. The reaction rate coefficients were expressed in terms of pH and temperature. Automatic optimal algorithm was invented to estimate the reaction rate coefficients by minimizing the sum of squares of the numerical errors and combined with the model. In order to minimize the concentration of chlorine and pollutants at the final usage sites, a real-time predictive control system is imperative which can predict the water quality variables from the chlorine disinfection process at the water purification plant to the customer by means of a model and operate the disinfection process according to the influent water quality. This model can be used to build such a system in water treatment plants.

Photosynthetic Responses of Populus alba×glandulosa to Elevated CO2 Concentration and Air Temperature (CO2 농도 및 기온 상승에 대한 현사시나무의 광합성 반응)

  • Lee, Solji;Oh, Chang-Young;Han, Sim-Hee;Kim, Ki Woo;Kim, Pan-Gi
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.1
    • /
    • pp.22-28
    • /
    • 2014
  • This study was conducted to investigate the photosynthetic characters of Populus alba${\times}$glandulosa cuttings in response to elevated $CO_2$ concentration and air temperature for selecting tree species adaptive to climate change. The cuttings were grown in environment controlled growth chambers with two combinations of $CO_2$ concentration and air temperature conditions: (i) $22^{\circ}C$ + $CO_2$ 380 ${\mu}mol$ $mol^{-1}$ (control) and (ii) $27^{\circ}C$ + $CO_2$ 770 ${\mu}mol$ $mol^{-1}$ (elevated) for almost three months. The cuttings under the elevated treatment showed reduced tree height and photosynthetic pigment contents such as chlorophyll and carotenoid. In particular, the elevated treatment resulted in a marked reduction in the chlorophyll a closely associated with $CO_2$ fixative reaction system. Different levels of reduction in photosynthetic characters were found under the elevated treatment. A decrease was noted in photochemical reaction system parameters: net apparent quantum yield (7%) and photosynthetic electron transport rate (14%). Moreover, a significant reduction was obvious in $CO_2$ fixative reaction system parameters: carboxylation efficiency (52%) and ribulose-1,5-bisphosphate(RuBP) regeneration rate (24%). These results suggest that the low level of photosynthetic capacity may be attributed to the decreased $CO_2$ fixative reaction system rather than photochemical reaction system.