• 제목/요약/키워드: Reactant gas addition

검색결과 18건 처리시간 0.026초

분리막 반응기를 이용한 천연가스 개질반응의 성능에 관한 비교 분석 (Comparative studies for the performance of a natural gas steam reforming in a membrane reactor)

  • 이보름;임한권
    • 한국가스학회지
    • /
    • 제20권6호
    • /
    • pp.95-101
    • /
    • 2016
  • 본 연구에서는 다양한 수소 생산 방법 중 하나인 천연가스 수증기 개질반응(natural gas steam reforming reaction)에 대해 일반적인 충전층반응기와 반응기와 수소분리기가 결합된 새로운 형태의 분리막 반응기에서의 성능에 대한 비교분석을 수행하였다. Xu 와 Froment에 의해 기존에 발표된 실험결과를 바탕으로 상업용 화학공정모사기인 Aspen $HYSYS^{(R)}$ 모델이 개발되었으며, 반응온도, $H_2$ 투과량, Ar 유량 등이 분리막 반응기에서의 반응물의 전환율 및 $H_2$ 수율 향상도에 미치는 영향에 대해 분석한 결과 분리막 반응기에서 보다 많은 양의 수소수율 및 메탄전환율이 확인되었다. 더 나아가, 전체 시스템에서 필요로 하는 열량을 공급하기 위해 요구되는 천연가스의 양에 초점을 맞춰 분리막 반응기에서의 원가절감 가능성을 평가한 결과, 분리막 반응기에서 10.94%의 원가절감이 관찰되었다.

CO Oxidation of Catalytic Filters Consisting of Ni Nanoparticles on Carbon Fiber

  • Seo, Hyun-Ook;Nam, Jong-Won;Kim, Kwang-Dae;Kim, Young-Dok;Lim, Dong-Chan
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권4호
    • /
    • pp.1199-1203
    • /
    • 2012
  • Catalytic filters consisting of Ni nanoparticle and carbon fiber with different oxidation states of Ni (either metallic or oxidic) were prepared using a chemical vapor deposition process and various post-annealing steps. CO oxidation reactivity of each sample was evaluated using a batch type quartz reactor with a gas mixture of CO (500 mtorr) and $O_2$ (3 torr) at $300^{\circ}C$. Metallic and oxidic Ni showed almost the same CO oxidation reactivity. Moreover, the CO oxidation reactivity of metallic sample remained unchanged in the subsequently performed second reaction experiment. We suggested that metallic Ni transformed into oxidic state at the initial stage of the exposure to the reactant gas mixture, and Ni-oxide was catalytically active species. In addition, we found that CO oxidation reactivity of Ni-oxide surface was enhanced by increase in the $H_2O$ impurity in the reactor.

Characteristics of MOCVD Cobalt on ALD Tantalum Nitride Layer Using $H_2/NH_3$ Gas as a Reactant

  • 박재형;한동석;문대용;윤돈규;박종완
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.377-377
    • /
    • 2012
  • Microprocessor technology now relies on copper for most of its electrical interconnections. Because of the high diffusivity of copper, Atomic layer deposition (ALD) $TaN_x$ is used as a diffusion barrier to prevent copper diffusion into the Si or $SiO_2$. Another problem with copper is that it has weak adhesion to most materials. Strong adhesion to copper is an essential characteristic for the new barrier layer because copper films prepared by electroplating peel off easily in the damascene process. Thus adhesion-enhancing layer of cobalt is placed between the $TaN_x$ and the copper. Because, cobalt has strong adhesion to the copper layer and possible seedless electro-plating of copper. Until now, metal film has generally been deposited by physical vapor deposition. However, one draw-back of this method is poor step coverage in applications of ultralarge-scale integration metallization technology. Metal organic chemical vapor deposition (MOCVD) is a good approach to address this problem. In addition, the MOCVD method has several advantages, such as conformal coverage, uniform deposition over large substrate areas and less substrate damage. For this reasons, cobalt films have been studied using MOCVD and various metal-organic precursors. In this study, we used $C_{12}H_{10}O_6(Co)_2$ (dicobalt hexacarbonyl tert-butylacetylene, CCTBA) as a cobalt precursor because of its high vapor pressure and volatility, a liquid state and its excellent thermal stability under normal conditions. Furthermore, the cobalt film was also deposited at various $H_2/NH_3$ gas ratio(1, 1:1,2,6,8) producing pure cobalt thin films with excellent conformality. Compared to MOCVD cobalt using $H_2$ gas as a reactant, the cobalt thin film deposited by MOCVD using $H_2$ with $NH_3$ showed a low roughness, a low resistivity, and a low carbon impurity. It was found that Co/$TaN_x$ film can achieve a low resistivity of $90{\mu}{\Omega}-cm$, a low root-mean-square roughness of 0.97 nm at a growth temperature of $150^{\circ}C$ and a low carbon impurity of 4~6% carbon concentration.

  • PDF

탄소나노튜브의 제조 및 광학적 응용 연구 (Synthesis of Carbon Nanotube and Optical Application)

  • 주영준;소원욱;김희주;최호석;문상진
    • 한국수소및신에너지학회논문집
    • /
    • 제14권3호
    • /
    • pp.247-257
    • /
    • 2003
  • To investigate the effect of preparing condition on the physical properties of carbon nanotubes suitable for optical applications, carbon nanotubes were synthesized by thermal chemical vapor deposition using Ni particles as a catalyst on stainless steel substrate and acetylene as a reactant gas. To examine the physical and optical properties, SEM, TEM, Ram an, UV-visible, and photoluminescence spectroscopy were used. The physical properties of carbon nanotubes such as diameter, degree of growth density and morphology were closely related to such experimental conditions as Ni particle size, growing pressure, and etching condit on of Ni particles, it appeared from the light absorbance and photoluminescence spectra of carbon nanotube mixture prepared with an addition of a photopolymer, P3HT(Poly(3-hexylthIop hene)) that carbon nanotube could do a role as a kind of electron acceptor for solar cell application.

자체반응열 고온합성법을 이용한 Titanium Carbonitride의 합성에 관한 연구 (A Study on the Synthesis of Titanium Carbonitride by SHS(Self-propagating High-temperature Synthesis) Method)

  • 하호;황규민;이희철
    • 한국세라믹학회지
    • /
    • 제31권6호
    • /
    • pp.637-642
    • /
    • 1994
  • Using SHS(Self-propagating High-temperature Synthesis) method, the optimum synthetic condition of titanium carbonitride was established by controlling the parameters such as relative density of mixture (Ti+C), nitrogen pressure, additive amounts of titanium hydride(TiH1.924) and protecting heat loss. Under 1 atm nitrogen pressure, nitridation ratio with changing relative density of the sample compacts has a maximum (87.2%) at about 55%, and in the case of enveloping the pellet with a quartz tube, the highest nitridation ratio of 90% was obtained at about 68%. At relative density of 55%, nitridation ratio with the nitrogen pressure has a miximum (87.3%) at 7 atm. As the amounts of additive titanium hydride increased, nitridation ratio decreased at below 7 atm nitrogen pressure and, increased at above this pressure until percent of addition percent reached 15 wt% and decreased abruptly upon futher increases in titanium hydride. In the synthesis of TiCxNy by combustion reaction, heat transfer from combustion zone to preheating zone and nitrogen gas penetration into the compact were found to be important factors affecting the TiCxNy formation. It was difficult to obtain high nitridation ratio when the conbustion temperature was either too high or too low, and it seems that the retention of high temperature after a combustion wave sweeped through the reactant mixture pellet is critical to obtain a satisfactory nitridation ratio.

  • PDF

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2009년도 춘계학술발표대회
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Properties of Zeolite Nanopowder Coated with Titanium Dioxide by Atomic Layer Deposition

  • Lee, Bo Kyung;Ok, Hae Ryul;Bae, Hye Jin;Kim, Hyug Jong;Choi, Byung Ho
    • 한국재료학회지
    • /
    • 제26권3호
    • /
    • pp.149-153
    • /
    • 2016
  • Nanosized zeolites were prepared in an autoclave using tetraethoxysilane (TEOS), tetrapropylammonium hydroxide (TPAOH), and $H_2O$, at various hydrothermal synthesis temperatures. Using transmission electron microscopy and particle size analysis, the nanopowder particulate sizes were revealed to be 10-300 nm. X-ray diffraction analysis confirmed that the synthesized nanopowder was silicalite-1 zeolite. Using atomic layer deposition, the fabricated zeolite nanopowder particles were coated with nanoscale $TiO_2$ films. The $TiO_2$ films were prepared at $300^{\circ}C$ by using $Ti[N(CH_3)_2]_4$ and $H_2O$ as precursor and reactant gas, respectively. In the TEM analysis, the growth rate was ${\sim}0.7{\AA}/cycle$. Zeta potential and sedimentation test results indicated that, owing to the electrostatic repulsion between $TiO_2$-coated layers on the surface of the zeolite nanoparticles, the dispersibility of the coated nanoparticles was higher than that of the uncoated nanoparticles. In addition, the effect of the coated nanoparticles on the photodecomposition was studied for the irradiation time of 240 min; the concentration of methylene blue was found to decrease to 48%.

연료전지 가스확산층(GDL) 내의 물질거동에 대한 연구 (Analysis of Mass Transport in PEMFC GDL)

  • 정희석;김정익;이성호;임철호;안병기;김찬중
    • 대한기계학회논문집B
    • /
    • 제36권10호
    • /
    • pp.979-988
    • /
    • 2012
  • 연료전지 GDL 내의 물질전달에 관한 연구를 위하여 실제 GDL 을 고해상도 3 차원 스캐닝 장비를 활용하여 GDL의 다공 구조를 실측하였다. 측정된 Data의 노이즈를 제거하고 GDL의 Carbon-fiber 구조를 전산해석이 가능한 모델로 자동적으로 형성하는 알고리즘을 개발하였으며, 이 모델을 활용하여 스택 체결 시 압축에 의한 GDL 구조 변형을 예측하고, Carbon-fiber의 정렬 방향에 따른 변형 특성을 파악하였다. 또한, CFD 기법 중 하나인 VOF 모델과 Pore-network 모델을 이용하여 GDL 내부의 물거동 및 반응기체의 물질거동을 예측하였다. 마지막으로 상사실험을 통하여 해석 결과에 대한 검증을 실시하였다. 이를 통하여 실제 체결에 의하여 압축 변형된 GDL 내에서의 물질거동을 좀 더 정확히 예측할 수 있는 방법을 마련하고, GDL 체결 방향 및 최적 MPL 두께 선정 등의 실제 설계에 활용할 수 있었다.