• Title/Summary/Keyword: Re-tension

Search Result 79, Processing Time 0.033 seconds

Knit fashion design by application of a flower image of Georgia O'Keeffe painting (조지아 오키프(Georgia O'Keeffe) 회화의 꽃 이미지를 응용한 니트 패션 디자인)

  • Kim, Hyeon-Yeong;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.2
    • /
    • pp.180-197
    • /
    • 2016
  • The purpose of this study is to create knit ruffles that represent the aesthetic and artistic values of painted works of art that rhythmically express flower petals and add an artistic impression on the knit ruffle designs. This study is based on the artistic life of Georgia O'Keeffe and changes in her artistic background, and the world of paintings. The relevant data was gathered from domestic and foreign references, academic journals, and the internet. The characteristics of Georgia O'Keeffe paintings were examined. Her paintings typically include a series of various motifs, symmetry, balance, and harmony of detailed realistic expressions and abstract elements, repetition, and the principles of contrast and emphasis in shaping. The decoration techniques used on fabrics were applied using the knitting machine which controls the tension to develop a variety of textures, apart from the previous standardized knit textures, through various knitting techniques. A gradation effect was then applied by piece-dyeing the knitted materials in various colors to express asimilarity to the original colors in O'Keeffe's works with delicate color expressions. After the piece-dyeing, the decorative knitted materials were trimmed on a model to re-create the natural curves of flower petals. This study aims to converge works of art with fashion designs to develop various creative knitted fashion and to impart an artistic sense in the fashion design industry.

Strength Model for Punching Shear of Flat Plate-Column Connections (플랫플레이트-기둥 접합부의 뚫림전단강도)

  • Choi Kyoung-Kyu;Park Hong-Gun
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.2 s.80
    • /
    • pp.163-174
    • /
    • 2004
  • A number of experiments were performed to investigate the punching shear strength of flat plate-column connections. According to the experiments, the punching shear strength varies significantly with design parameters such as the column size of the connection, reinforcement ratio, and boundary condition. However, current design methods do not properly address the effects of such design parameters. In the present study, a theoratical approach using Rankine's failure cirterion was attempted to define the failure mechanism of the punching shear According to the study, the failure mechanism can be classified into the compression-controlled and the tension-controlled, depending on the amount of bottom re-bars placed at the connection, and the punching shear strength is also significantly affected by the flexural damage of slab. Based on the finding, a new strength model of punching shear was developed, and verified by the comparisons with existing experiments and nonlinear finite element analyses. The comparisons show that the proposed strength model addressing the effects of various design parameters can predict accurately the punching shear strength, compared to the existing strength models.

Shear and Bond Strength of Activated Hwangtoh Concrete Beam (활성 황토 콘크리트 보의 전단 및 부착 강도)

  • Lee, Nam-Kon;Park, Hong-Gun;Hwang, Hye-Zoo
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.5
    • /
    • pp.685-694
    • /
    • 2010
  • As a eco-friendly material, Hwangtoh (red clay) has been studied for complete or partial replacement of portland cement. Most of existing studies focused on the material properties of the Hwangtoh concrete including the compressive strength, drying shringkage, and creep. In the present study, the shear strength of the beams made with the Hwangtoh concrete was tested. Further, bond strength of tension re-bars embedded in the Hwangtoh concrete was tested. One of the concrete tested consisted of activated Hwangtoh replacing 20% of the cement. The other consisted 100% activated. Hwangtoh replacing all the cement. The beam specimens were tested under two point static loading. The test result showed that the shear strength of activated Hwangtoh concrete beams replacing 20% and 100% of cement was equivalent to that of the ordinary portland cement concrete beam. However, the bond strength of activated Hwangtoh concrete replacing 100% of the cement was less than that of the ordinary portland cement concrete.

Experimental study on the mechanical response and failure behavior of double-arch tunnels with cavities behind the liner

  • Zhang, Xu;Zhang, Chengping;Min, Bo;Xu, Youjun
    • Geomechanics and Engineering
    • /
    • v.20 no.5
    • /
    • pp.399-410
    • /
    • 2020
  • Cavities often develop behind the vault during the construction of double-arch tunnels, generally in the form of various defects. The study evaluates the impact of cavities behind the vault on the mechanical and failure behaviors of double-arch tunnels. Cavities of the same sizes are introduced at the vault and the shoulder close to the central wall of double-arch tunnels. Physical model tests are performed to investigate the liner stress variation, the earth pressure distribution and the process of progressive failure. Results reveal that the presence of cavities behind the liner causes the re-distribution of the earth pressure and induces stress concentration near the boundaries of cavities, which results in the bending moments in the liner inside the cavity to reverse sign from compression to tension. The liner near the invert becomes the weak region and stress concentration points are created in the outer fiber of the liner at the bottom of the sidewall and central wall. It is suggested that grouting into the foundation soils and backfilling injection should be carried out to ensure the tunnel safety. Changes in the location of cavities significantly impact the failure pattern of the liner close to the vault, e.g., cracks appear in the outer fiber of the liner inside the cavity when a cavity is located at the shoulder close to the central wall, which is different from the case that the cavity locates at the vault, whereas changes in the location of cavities have a little influence on the liner at the bottom of the double-arch tunnels.

A Study of Weldability for Pure Titanium by Nd:YAG Laser(IV) - Lap Welding and Application for Heat Exchanger - (순티타늄판의 Nd:YAG 레이저 용접성에 관한 연구(IV) - 겹치기 용접 및 실물 열교환기로의 적용 -)

  • Kim, Jong-Do;Kwak, Myung-Sub;Lee, Chang-Je;Kil, Byung-Lea
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.66-71
    • /
    • 2010
  • With large specific strength and outstanding corrosion resistance and erosion resistance in sea water, titanium and titanium alloy are widely used in heat exchanger production. In particular, pure titanium demonstrates outstanding molding performance and may be considered optimal for production of heat exchanger. Since titanium is very vulnerable to oxidation and embrittlement during welding, processes with less heat input are widely used, and laser welding is widely applied by considering production performance and shield etc in atmosphere. So far, 1st report and 2nd report compared and analyzed embrittlement degrees by bead colors of weldment through oxygen and nitrogen quantitative analysis and hardness measurement, and evaluated welding performance and mechanical properties of butt welding. This study evaluated field applicability of lap welding to heat exchange plate of LPG re-liquefaction device for ships through tensile stress test, hardness test and internal pressure test etc after deducing optimal weding condition and applying to actual heat exchange plate. In bead overlap area, the experiment produced sound welds with no porosity or defect by increasing and decreasing laser power, and tensile-shear test results indicated virtually the same tension and yield strength as base metal. As a result of measuring hardness at lateral cross section and bead overlap zone of actual heat exchanger welds, hardness difference within 20Hv was produced at base metal, HAZ and weldment, and as a result of pneumatic and hydraulic pressure test, no leakage occurred.

Nonlinear Finite Element Analysis of RC Shear Walls under Cyclic Loadings (반복하중을 받는 철근콘크리트 전단벽의 비선형 유한요소 해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.4
    • /
    • pp.353-367
    • /
    • 2003
  • This paper describes the extension of the numerical model, which was developed to simulate the nonlinear behavior of reinforced concrete (RC) structures subjected to monotonic in plane shear and introduced in the companion paper, to simulate effectively the behavior of RE structures under cyclic loadings. While maintaining all the basic assumptions adopted in defining the constitutive relations of concrete under monotonic loadings, a hysteretic stress strain relation of concrete, which across the tension compression region, is defined. In addition, unlike previous simplified stress strain relations, curved unloading and reloading branches inferred from the stress strain relation of steel considering the Bauschinger effect we used. The modifications of the stress strain relation of steel are also introduced to reflect pinching effect depending on the shear span ratio and an average stress distribution in a cracked RC element. Finally, correlation studies between analytical results and experimental studies are conducted to establish the validity of the proposed model.

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part I: Site Investigation into the cause of damage

  • Jung, Min-Su;Kawajiri, Shunzo;Hur, Jin-Suk;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.3-10
    • /
    • 2010
  • Case study was carried out on the interpretation of the mechanical behavior of a severely damaged reinforced earth wall comprising geotextile with the concrete panel facing. In this part I, the outline of the damaged reinforced earth wall is in detail described. The background and cause of the damage are discussed based on the results of site investigation. The engineering properties of the fill were examined by performing various in-situ and laboratory tests, including the surface wave survey (SWS), PS-logging, RI-logging, soaking test, the direct shear box (DSB) test, bender element (BE) test, etc. The background as well as the cause for the damage of the wall may be described such that i) a considerable amount of settlement took place over a 3m thick weak soil layer in the lower part of the reinforced earth due to seepage of rainfall water, ii) the weight of the upper fill was partially supported by the geo-textile hooked on the concrete panels (n.b., named conveniently "hammock state" in this paper), and iii) the concrete panels to form the hammock were severely damaged by the unexpectedly large downwards compression force triggered by the tension force of the geotextile. The numerical simulation for the hammock state of the wall, together with counter-measures to re- stabilize the wall is subsequently described in Part II.

  • PDF

Transposition of Flexor Carpi Radialis and Superficial Digital Flexor Muscles for Reconstruction of Carpal Injury in a Dog (개에서 요골쪽앞발목굽힘근과 얕은앞발가락굽힘근을 이용한 앞발목 부위의 연부조직 결손 재건 증례)

  • So, Kyoung-Min;Kim, Joo-Ho;Lee, Hae-Beom;Heo, Su-Young;Ko, Jae-Jin;Lee, Cheol-Ho;Chon, Seung-Ki;Kim, Nam-Soo
    • Journal of Veterinary Clinics
    • /
    • v.24 no.2
    • /
    • pp.276-279
    • /
    • 2007
  • A 2-year-old male, 3 kg body weight Japanese Chin was injured in the automobile accident three months ago. The dog became antebrachiocarpal joint instability, and performed pancarpal arthrodesis using 3 K-wires in localanimal hospital. But, the result was failure. Therefore the dog was referred to Chonbuk Animal Medical Center, Chonbuk National University. In physical examination, right carpal joint instability, knuckling sign and pain were evident. In radiography, sclerosis was observed on the 4th carpal bone. Complete blood count (CBC), serum chemistry and urinalysis finding were within reference ranges. Pancarpal arthrodesis was re-performed using 7-hole plate. However, mild skin and muscle defects was appeared by skin tension of extremity. We expected that granulation would fill the defect, but inflammation was continued on the lesions for 3 days. So, operation which is filling it was done by using the muscle flap and tubed skin flap. The donor muscles were flexor carpi radialis and superficial digital flexor muscles. After 7 days, the muscle flap was survived, but tubed skin flap was necrosed. After 20 days, the skin defect was substituted with granulation tissues. The flexor carpi radialis muscle and superficial digital flexor muscle transposition can be a useful procedure for reconstructing soft tissue defects in the carpal and metacarpal areas.

The safety of one-per-mil tumescent infiltration into tissue that has survived ischemia

  • Prasetyono, Theddeus Octavianus Hari;Nindita, Eliza
    • Archives of Plastic Surgery
    • /
    • v.46 no.2
    • /
    • pp.108-113
    • /
    • 2019
  • Background The aim of this study was to assess the safety of one-per-mil tumescent injections into viable skin flaps that had survived an ischemic insult, in order to assess the potential suitability of one-per-mil tumescent injections in future secondary reconstructive procedures such as flap revision and refinements after replantation. Methods Forty groin flaps harvested from 20 healthy Wistar rats weighing 220 to 270 g were subjected to acute ischemia by clamping the pedicle for 15 minutes. All flaps showing total survival on the 7th postoperative day were randomly divided into group A (one-per-mil tumescent infiltration; n=14), group B (normal saline infiltration; n=13), and group C (control, with no infiltration; n=13) before being re-elevated. Transcutaneous oxygen tension ($TcPO_2$) was measured before and after infiltration, and changes in $TcPO_2$ were statistically analyzed using analysis of variance, the paired t-test, and the independent t-test. The viability of flaps was also assessed using the Analyzing Digital Images software at 7 days after the second elevation. Results Thirty-nine flaps survived to the final assessment, with the sole exception of a flap from group A that did not survive the first elevation. $TcPO_2$ readings showed significant decreases (P<0.05) following both one-per-mil tumescent ($99.9{\pm}5.7mmHg$ vs. $37.2{\pm}6.3mmHg$) and normal saline ($103{\pm}8.5mmHg$ vs. $48.7{\pm}5.9mmHg$) infiltration. Moreover, all groin flaps survived with no signs of tissue necrosis. Conclusions One-per-mil tumescent infiltration into groin flap tissue that had survived ischemia did not result in tissue necrosis, although the flaps experienced a significant decrease of cutaneous oxygenation.

Comparison of Growth Characteristics and Ginsenoside Contents of 3-Year-Old Ginseng (Panax ginseng C. A. Meyer) by Drainage Class and Shade Material in Paddy Soil (논토양에서 해가림 유형별 3년생 인삼의 생육과 진세노사이드함량 비교)

  • Lee, Sung-Woo;Kim, Gum-Sook;Hyun, Dong-Yun;Kim, Yong-Burm;Yeon, Byeong-Yeol;Kang, Seung-Won;Kim, Young-Churl
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.4
    • /
    • pp.390-396
    • /
    • 2009
  • To select optimal shade material in paddy soil, growth characteristics and ginsenoside contents were investigated in new cultivar, 'Cheonpoong' of three-year-old ginseng cultured under three kinds of shade materials such as three-layered blue and one-layered black PE (polyethylene) net (TBPN), blue PE sheet (BPSS), and aluminium-coated PE sheet (APSS). The order of light transmission ratio and air temperature by shade materials were BPSS > APSS > TBSB among three shade materials. Average soil water tension in PDC and IDC was 64 mbar (absolute soil moisture, 25%) and 123 mbar (absolute soil moisture, 17%), respectively, and soil water tension in IDC was changed more distinctly than that of PDC by season and shade materials. Yield in PDC was distinctly decreased more than that in IDC because of the increase of discolored-leaf and rusted-root ratio. BPSS and TBPN among three shade materials were the most effective on the increase of yield in PDC and IDC, respectively. Ratio of rusty-colored root showed not significant difference by drainage class and shade materials. Contents of panaxatriol ginsenoside (Rg1, Re and Rf) were decreased in PDC, while it of panaxadiol ginsenoside (Rb1, Rc and Rd) were increased in IDC. Total ginsenoside contents of IDC was distinctly higher than that of PDC, and BPSS showed the highest contents among three shade materials regardless of poorly and imperfectly drainage class.