• Title/Summary/Keyword: Re-solidification

Search Result 24, Processing Time 0.024 seconds

The Effect of Re addition and Solidification Rate on the Directional Solidification Behavior of Ni-Al Alloy (Ni-Al 합금의 일방향 응고 거동에 미치는 Re 및 응고속도의 영향)

  • Lee, Man-Gil;Yoo, Young-Soo;Jo, Chang-Yong;Lee, Je-Hyun
    • Journal of Korea Foundry Society
    • /
    • v.27 no.6
    • /
    • pp.243-249
    • /
    • 2007
  • The effect of Re addition and solidification rate on the directional solidification behavior of Ni-Al model alloy has been investigated. Directional solidification (DS) were carried out using the modified Bridgman furnace with various solidification rates. The solid/liquid interface during directional solidification was preserved by quenching the specimen after the desired volume fraction of original liquid was solidified. The equilibrium partition coefficients of Al and Re Were estimated by measuring the compositions at the quenched solid/liquid interface. Then, the effect of Re addition on the elemental segregation behavior was carefully analyzed. The differential scanning calorimetry results showed that the Re addition results in increased ${\gamma}'$ solvus and freezing range of the alloy. It was also shown that the primary dendrite arm spacing gradually decreases with increasing the Re content, while the secondary dendrite arm spacing appears to be independent on the Re content. The compositional analyses clearly revealed that the segregation of Al increased with increasing the Re content and solidification rate, while that of Re was found to be independent on the solidification rate in the range of $10{\sim}100{\mu}m/s$ due to its sluggish diffusion rate in the Ni solid solution.

The effect of lanthanum on the solidification curve and microstructure of Al-Mg alloy during eutectic solidification

  • Xie, Shikun;Yi, Rongxi;Guo, Xiuyan;Pan, Xiaoliang;Xia, Xiang
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.77-85
    • /
    • 2015
  • The influence of rare earth lanthanum (La) on solidification cooling range, microstructure of aluminum-magnesium (Al-Mg) alloy and mechanical properties were investigated. Five kinds of Al-Mg alloys with rare earth content of La (i.e., 0, 0.5, 1.0, 1.5 and 2.0 wt.%) were prepared. Samples were either slowly cooled in furnace or water cooled. Results indicate that the addition of the rare earth (RE) La can significantly influence the solidification range, the resultant microstructure, and tensile strength. RE La can extend the alloy solidification range, increase the solidification time, and also greatly improve the flow performance. The addition of La takes a metamorphism effect on Al-Mg alloy, resulting in that the finer the grain is obtained, the rounder the morphology becomes. RE La can significantly increase the mechanical properties for its metamorphism and reinforcement. When the La content is about 1.5 wt.%, the tensile strength of Al-Mg alloy reaches its maximum value of 314 MPa.

The Effect of Sb/RE on the As-Cast Morphology of Graphite and Mechanical Properties of Heavy Section Ferritic Ductile Cast Iron (후육 페라이트 구상흑연주철의 주방상태 흑연형상 및 기계적 성질에 미치는 Sb/RE의 영향)

  • Shin, Ho-Chul;Yun, Ho-Sung;Shin, Je-Sik;Lee, Sang-Mok;Moon, Byung-Moon
    • Journal of Korea Foundry Society
    • /
    • v.25 no.5
    • /
    • pp.195-202
    • /
    • 2005
  • In this study, we investigated the effect of Sb/RE on the microstructure and mechanical properties of as-cast heavy sectioned, over 250mm thickness, ferritic ductile cast iron. Exothermic and thermal insulation material were equipped on the wall of sand cast mold having the dimensions of $250{\times}250{\times}250$ mm. The nominal composition of the molten metal was controlled to be on the eutectic composition and Sb was added about 0, 0.005 and 0.02% respectively. In the center of as-cast ingot without Sb addition, the solidification of chunky graphite was induced by the eutectic reaction that took long time, which caused the decrease of elongation and impact energy. In case that the value of Sb/RE is 0.8, the solidification of chunky graphite could be suppressed and the improvement of nodularity was observed. On the other hand, the excessive addition of Sb suppressed the solidification of chunky graphite but gave rise to the solidification of flake graphite and the increase of pearlite contents. This results in poor elongation and impact energy which is lower than those in the case of no Sb addition.

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Analytical Study on Re-solidification Materials(Ammonium Carbonate Intermediates) for NOx Reduction of Exhaust Emissions in Diesel Engine with Solid SCR (디젤엔진 배출가스 질소산화물 저감을 위한 Solid SCR용 Ammonium Carbonate 중간생성물인 재응고 물질의 분석 연구)

  • Shin, Jong Kook;Lee, Hoyeol;Yoon, Cheon Seog;Kim, Hongsuk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.4
    • /
    • pp.152-159
    • /
    • 2014
  • Urea solution as a reductant of SCR has been widely used to reduce NOx emissions from diesel engine. But it has lots of problems which are freezing at low temperature due to liquid state, deposition of solid formation in the exhaust, dosing device, and complex package such as mixers for uniform concentration of ammonia. In order to overcome these obstacle, ammonium carbonate which is one of solid ammonium materials to produce ammonia gas directly by sublimation process is considered. Simple reactor with visible widow was designed to predict equilibrium temperature and pressure of ammonium carbonate. To simulate real operation conditions under automobile environment, several cycles of heating and cooling condition were settled, two different re-solidification materials were extracted from the reactor and visible window. Analytical study is performed to characterize these unknown materials by XRD(X-Ray Diffraction), FT-IR(Fourier Transform Infrared Spectroscopy), and EA(Elemental Analyzer). From analytical results, re-solidification materials from heating and cooling cycles are very similar to original material of ammonium carbonate.

Formation of Particles in the Laser Melted Zone of Alloy 600

  • Lim, Yun-Soo;Cho, Hai-Dong;Kuk, Il-Hiun;Kim, Joung-Soo
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05b
    • /
    • pp.80-85
    • /
    • 1997
  • Studies on particles formed in the laser melted zone (LMZ) of sensitized Ni base Alloy 600 have been carried out using microscopic equipments. Most of them were identified as TiN type and MgS type particles were also found in the cell boundaries. All of the particles were located in the cellular solidification region, but no particle was formed in the plane front solidification regions of the LMZ. Cr carbides which had formed during sensitization treatment were completely melted during laser surface melting and hardly re-precipitated during the matrix solidification.

  • PDF

Rapidly Solidified Powder Metallurgy Mg-Zn-RE Alloys with Long Period Order Structure

  • Kawamura, Yoshihito
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1269-1270
    • /
    • 2006
  • Mg-Zn-RE alloys had a novel lond period stacking ordered (LPO) structure. Their rapidly solidified powder metallurgy (RS P/M) alloys exhibited a combination of high strength and god ductility (tensile yield strength above 550 MPa and elongation above 5%). The LPO Mg-Zn-RE RS P/M alloys had high elevated temperature strength (tensile yield strength above 380 MPa at 473 K) and exhibited a high-strain-rate superplasticity at higher temperatures. In Japan, a national project for developing high strength LPO Mg-Zn-RE RS P/M alloys has started at 2003 for 5 years, which is founded by the Ministry of Economy, Trade and Industry (METI) of Japan. In the national project, project targets in materials performances have been achieved. The developed LPO Mg-Zn-RE RS P/M alloys exhibited higher tensile yield strength, fatigue strength and corrosion resistance than high strength aluminum alloys of extra-super-duralumin (7075-T6).

  • PDF

MICROSTRUCTURAL CHARACTERIZATION OF U-10WT.%ZR FUEL SLUGS CONTAINING RARE-EARTH ELEMENTS PREPARED BY MODIFIED INJECTION CASTING

  • SANG-HUN LEE;KI-HWAN KIM;SEOUNG-WOO KUK;JEONG-YONG PARK;JI-HOON CHOI
    • Archives of Metallurgy and Materials
    • /
    • v.64 no.3
    • /
    • pp.953-957
    • /
    • 2019
  • U-10wt.%Zr metallic fuel slugs containing rare-earth (RE: a rare-earth alloy comprising 53% Nd, 25% Ce, 16% Pr and 6% La) elements for a sodium-cooled fast reactor were fabricated by modified injection casting as an alternative method. The distribution, size and composition of the RE inclusions in the metallic fuel slugs were investigated according to the content of the RE inclusions. There were no observed casting defects, such as shrunk pipes, micro-shrinkage or hot tears formed during solidification, in the metallic fuel slugs fabricated by modified injection casting. Scanning electron micrographs and energy-dispersive X-ray spectroscopy (SEM-EDS) showed that the Zr and RE inclusions were uniformly distributed in the matrix and the composition of the RE inclusions was similar to that of a charged RE element. The content and the size of the RE inclusions increased slightly according to the charge content of the RE elements. RE inclusions in U-Zr alloys will have a positive effect on fuel performance due to their micro-size and high degree of distribution.

Separation and Solidification of Rare Earth Nuclides from LiCl-KCl Based Eutectic Waste Salts using a series of Phosphorylation/Distillation/Solidification Processes (인산화/증류/고화의 일련공정을 이용한 LiCl-KCl 공융염폐기물 내 희토류 핵종 분리 및 고화)

  • Eun, Hee-Chul;Choi, Jung-Hoon;Cho, In-Hak;Park, Hwan-Seo;Park, Geun-Il
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.11 no.4
    • /
    • pp.325-332
    • /
    • 2013
  • Pyroporcessing of spent nuclear fuel generates a considerable amount of LiCl-KCl eutectic waste salt containing radioactive rare earth (RE) chlorides. In this study, a series of processes, which consist of a phosphorylation/distillation process and a solidification process, were performed to minimize volume of the LiCl-KCl eutectic waste salt and solidify a residual waste into a stable form at a relatively low temperature. Over 99wt% of RE chlorides in LiCl-KCl eutectic salt was converted and separated into $REPO_4$ in the phosphorylation/distillation process using a mixture of $Li_3PO_4-K_3PO_4$. The separated $REPO_4$ was solidified into a homogeneous and fine-grained form at $1,050^{\circ}C$ using LIP(Lead Iron Phosphate) as a solidification agent. The final waste volume was reduced below about 10% through the series of the processes.

Numerical analysis of melt migration and solidification behavior in LBR severe accident with MPS method

  • Wang, Jinshun;Cai, Qinghang;Chen, Ronghua;Xiao, Xinkun;Li, Yonglin;Tian, Wenxi;Qiu, Suizheng;Su, G.H.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.1
    • /
    • pp.162-176
    • /
    • 2022
  • In Lead-based reactor (LBR) severe accident, the meltdown and migration inside the reactor core will lead to fuel fragment concentration, which may further cause re-criticality and even core disintegration. Accurately predicting the migration and solidification behavior of melt in LBR severe accidents is of prime importance for safety analysis of LBR. In this study, the Moving Particle Semi-implicit (MPS) method is validated and used to simulate the migration and solidification behavior. Two main surface tension models are validated and compared. Meanwhile, the MPS method is validated by the L-plate solidification test. Based on the improved MPS method, the migration and solidification behavior of melt in LBR severe accident was studied furthermore. In the Pb-Bi coolant, the melt flows upward due to density difference. The migration and solidification behavior are greatly affected by the surface tension and viscous resistance varying with enthalpy. The whole movement process can be divided into three stages depending on the change in velocity. The heat transfer of core melt is determined jointly by two heat transfer modes: flow heat transfer and solid conductivity. Generally, the research results indicate that the MPS method has unique advantage in studying the migration and solidification behavior in LBR severe accident.