• 제목/요약/키워드: Re-manufacturing

검색결과 311건 처리시간 0.025초

편심구동장치 시제품 개발을 위한 3D프린팅-5축가공 복합기술 (Hybrid Technology using 3D Printing and 5-axis Machining for Development of Prototype of the Eccentric Drive System)

  • 황종대;양준석;윤성환;정윤교
    • 한국기계가공학회지
    • /
    • 제15권2호
    • /
    • pp.38-45
    • /
    • 2016
  • Since a 5-axis machine tool has two rotary axes, it offers numerous advantages, such as flexible accessibility, longer tool life, better surface finish, and more accuracy. Moreover, it can conduct whole machining by rotating the rotary feed axes while setting the fixture at once without re-fixing in contrast to conventional 3-axis machining. However, it is difficult to produce complicated products that have a hollow shape. In contrast, 3D printing can produce an object with a complicated hollow shape easily and rapidly. However, because of layer thickness and shrinkage, its surface finish and dimensional accuracy are not adequate. Therefore, this study proposes hybrid technology by integrating the advantages of these two manufacturing processes. 3D printing was used as the additive manufacturing rapidly in the whole body, and 5-axis machining was used as the subtractive manufacturing accurately in the joining and driving places. The reliability of the proposed technology was verified through a comparison with conventional technology in the aspects of processing time, surface roughness. and dimensional accuracy.

Reverse Offset Printing용 고신축성 Blanket 재료 선정에 관한 연구 (A Study on the Selection of Highly Flexible Blanket for Reverse Offset Printing)

  • 신승항;김석;조영태
    • 한국기계가공학회지
    • /
    • 제20권5호
    • /
    • pp.121-127
    • /
    • 2021
  • Reverse offset printing is considering as an emerging technology for printed electronics owing to its environmentally friendliness and cost-effectiveness. In reverse offset printing, selecting the materials for cliché and blanket is critical because of its minimum resolution, registration errors, aspect ratio of reliefs, pattern area, and reusability. Various materials such as silicon, quartz, glass, electroplated nickel plates, and imprinted polymers on rigid substrates can be used for the reverse offset printing of cliché. However, when new structures are designed for specific applications, new clichés need to re-fabricated each time employing multiple time-consuming and costly processes. Therefore, by modifying the blanket materials containing the printing ink, several new structures can be easily created using the same cliché. In this study, we investigated various elastomeric materials and evaluated their applicability for designing a highly stretchable blanket with controlled elastic deformation to implement tunable reverse offset printing.

헬리컬기어의 전달오차예측 비교에 관한 연구 (A Study on the Comparison of Transmission Error Prediction for a Helical Gear Pair)

  • 김래성;장기;최창;양용군;류성기
    • 한국기계가공학회지
    • /
    • 제14권2호
    • /
    • pp.14-18
    • /
    • 2015
  • In recent years, world is faced with a transportation energy dilemma, and the transportation is almost dependent on a single fuel - petroleum. However, Hybrid Electric Vehicle (HEV) technology holds more advantages to reduce the demand for petroleum in the transportation by efficiency improvements of petroleum consumption. Therefore, there is a trend that lower gear noise levels are demanded in HEV for drivers to avoid annoyance and fatigue during operation. And meshing transmission error (T.E.) is the excitation that leads to the tonal noise known as gear whine, and radiated gear whine is also the dominant source of noise in the whole gearbox. In this paper, the analysis of gear tooth profile and lead modification is firstly presented, and then, the different transmission error of no mesh misalignment and mesh misalignment under one loaded torque for the 1st gear pair of HEV gearbox was investigated and compared. At last, the appropriate tooth modification was used to minimize and compare the transmission error of the gear pair with mesh misalignment under the loaded torque.

PI6sigma를 이용한 R&D 프로세스 혁신 사례 연구 (A Case Study on R&D Process Innovation Using PI6sigma Methodology)

  • 김영진;정우철;최영근
    • 산업경영시스템학회지
    • /
    • 제33권1호
    • /
    • pp.17-23
    • /
    • 2010
  • The corporate R&D(Research and Development) has a primary role of new product development and its potential is the most crucial factor to estimate corporate future value. However, its systemic inadequacies and inefficiencies, the shorten product life-cycle to satisfy customer needs, the global operations by outsourcing strategy, and the reduction of product cost, are starting to expose to R&D business processes. The three-phased execution strategy for R&D innovation is introduced to establish master plan for new R&D model. From information technology point of view, PLM(Product Life-cycle Management) is one of the business total solutions in product development area. It is not a system, but the strategic business approach that collaboratively manage the product from beginning stage to end of life in all business areas PLM functions and capabilities are usually used as references to re-design new R&D process. BPA(Business Process Assessment) and 5DP(Design Parameters) in PI6sigma developed by Samsung SDS Consulting division are introduced to establish R&D master plan and re-design process respectively. This research provides a case study for R&D process innovation. How process assessment and PMM(Process Maturity Model) can be applied in business processes, and also it explains process re-design by 5DP method.

Damage detection of 3D printed mold using the surface response to excitation method

  • Tashakori, Shervin;Farhangdoust, Saman;Baghalian, Amin;McDaniel, Dwayne;Tansel, Ibrahim N.;Mehrabi, Armin
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.369-376
    • /
    • 2020
  • The life of conventional steel plastic injection molds is long but manufacturing cost and time are prohibitive for using these molds for producing prototypes of products in limited numbers. Commonly used 3D printers and rapid prototyping methods are capable of directly converting the digital models of three-dimensional solid objects into solid physical parts. Depending on the 3D printer, the final product can be made from different material, such as polymer or metal. Rapid prototyping of parts with the polymeric material is typically cheaper, faster and convenient. However, the life of a polymer mold can be less than a hundred parts. Failure of a polymeric mold during the injection molding process can result in serious safety issues considering very large forces and temperatures are involved. In this study, the feasibility of the inspection of 3D printed molds with the surface response to excitation (SuRE) method was investigated. The SuRE method was originally developed for structural health monitoring and load monitoring in thin-walled plate-like structures. In this study, first, the SuRE method was used to evaluate if the variation of the strain could be monitored when loads were applied to the center of the 3D printed molds. After the successful results were obtained, the SuRE method was used to monitor the artifact (artificial damage) created at the 3D printed mold. The results showed that the SuRE method is a cost effective and robust approach for monitoring the condition of the 3D printed molds.

Research on Participation and Position Evaluation of Korean Manufacturing Global Value Chain: Based on the Comparative Analysis with China and the United States

  • Zhang, Fan;Su, Shuai
    • Journal of Korea Trade
    • /
    • 제25권2호
    • /
    • pp.75-94
    • /
    • 2021
  • Purpose - This article will take the Korean manufacturing industry as an example to estimate Korea's global value chain status from the perspective of overall and sub-industry, hoping to provide a theoretical reference for Korean manufacturing to climb the global value chain. Design/methodology - Based on the WIOD data. The data is calculated by using MATLAB (2014a) coding. The data for 6 sectors are classified according to the International Standard Industrial Classification revision 3 (ISIC Rev. 3), the WIOD data are used to calculate and compare the position, participation and dynamics of the Korea, China and USA' manufacturing industry in the 1995-2016. Findings - The empirical results supported conclusions of the theoretical model. In the Korean GVC of electrical and optical sector, while stronger forward linkages than backward linkages to GVC are advantageous for an average advanced country, the benefits of downstream tasks are pronounced for non-advanced countries. And proved the correlation for an index to capture a country's upstream position or downstream position, it makes sense to compare that Korea's exports of intermediates in the same sector that are used by China and USA. Originality/value - The first is to re-examine the characteristics of South Korea's participation in global value chains under a more systematic and accurate theoretical framework, which provides a new empirical reference for related research; the second is to content covers of the manufacturing 6 sectors, so as to more completely describe the characteristics of Korean manufacturing's participation in global value chains; The value of this paper is providing empirical evidence of the effect of Korea's the GVC of manufacturing sectors. In the GVC of 6 sectors, first three have a higher position in the value chain and are in the upper middle and upper reaches of the GVC. The latter two have a low GVC position index, which has become the main sector that pulls down the overall position of Korea's manufacturing industry.

적층 제조된 H13 공구강의 미세조직과 기계적 특성간의 상관관계 (Correlation between Microstructure and Mechanical Properties of the Additive Manufactured H13 Tool Steel)

  • 안우진;박준혁;이정섭;최중호;정임두;유지훈;김상식;성효경
    • 한국재료학회지
    • /
    • 제28권11호
    • /
    • pp.663-670
    • /
    • 2018
  • H13 tool steels are widely used as metallic mold materials due to their high hardness and thermal stability. Recently, many studies are undertaken to satisfy the demands for manufacturing the complex shape of the mold using a 3D printing technique. It is reported that the mechanical properties of 3D printed materials are lower than those of commercial forged alloys owing to micropores. In this study, we investigate the effect of microstructures and defects on mechanical properties in the 3D printed H13 tool steels. H13 tool steel is fabricated using a selective laser melting(SLM) process with a scan speed of 200 mm/s and a layer thickness of $25{\mu}m$. Microstructures are observed and porosities are measured by optical and scanning electron microscopy in the X-, Y-, and Z-directions with various the build heights. Tiny keyhole type pores are observed with a porosity of 0.4 %, which shows the lowest porosity in the center region. The measured Vickers hardness is around 550 HV and the yield and tensile strength are 1400 and 1700 MPa, respectively. The tensile properties are predicted using two empirical equations through the measured values of the Vickers hardness. The prediction of tensile strength has high accuracy with the experimental data of the 3D printed H13 tool steel. The effects of porosities and unmelted powders on mechanical properties are also elucidated by the metallic fractography analysis to understand tensile and fracture behavior.

BPR 방법론에 기반한 중소 PCB 제조업체의 MES 구축 전략과 효과분석 (Implementation Strategy and Effect Analysis of MES for a Small and Medium PCB Production Company based on BPR Methodology)

  • 김건연;진유의;노상도;최상수;조용주;최석우
    • 산업공학
    • /
    • 제24권3호
    • /
    • pp.231-240
    • /
    • 2011
  • Manufacturing enterprises have been doing their best endeavors to obtain competitiveness using various methodologies, such as information technology. In order to achieve competitiveness, they are adopting manufacturing execution system (MES). MES is a total management system that manages from the beginning of the production by product order until the quality inspection of the finished product. And MES is an inter-mediator for supplementation of information gap between ERP and inspection machine and equipment. This paper describes on establishment of effective strategy based on BPR methodology and implementation of MES small and medium PCB manufacturing company with multiple-types of products and mixed process flows. And then we proposed evaluation model based on balanced score card (BSC) for considering non-finance elements as well as finance elements. With evaluation model, we analyzed benefits and effects of MES.

베어링메탈 제조공정에 따른 결함발생 및 피로균열 전파특성 (Properties of Defect Initiation and Fatigue Crack Growth in Manufacturing Process of Bearing Metal)

  • 김민건
    • 산업기술연구
    • /
    • 제35권
    • /
    • pp.3-8
    • /
    • 2015
  • A study has been made on defects which are formed in manufacturing processes of engine bearing and also on fatigue crack growth behavior in each step of bearing metal manufacturing. After the first step(sinter brass powder on steel plate ; Series A) many voids are made on brass surface and its size is decreased by the second step(rolling process of sintered plate ; Series B). After the third step(re-sintering step of brass powder and rolling ; Series C) the number of voids is decreased and its type shows line. The time of fatigue crack initiation and the growth rate of fatigue crack are in order of Series A, Series B, Series C. These reasons are that void fosters the crack initiation and growth, and residual stress made by rolling process effects on the crack growth rate in Series B, C. In forming and machining processes by use of final bearing metal, crack was observed at internal corner of flange and peeling off was observed at junction between steel and brass. Owing to the above crack and peeling off, it is considered that there is a possibility of fatigue fracture during the application time.

  • PDF

다단계 반도체 제조공정에서 함수적 입력 데이터를 위한 모니터링 시스템 (A Monitoring System for Functional Input Data in Multi-phase Semiconductor Manufacturing Process)

  • 장동윤;배석주
    • 대한산업공학회지
    • /
    • 제36권3호
    • /
    • pp.154-163
    • /
    • 2010
  • Process monitoring of output variables affecting final performance have been mainly executed in semiconductor manufacturing process. However, even earlier detection of causes of output variation cannot completely prevent yield loss because a number of wafers after detecting them must be re-processed or cast away. Semiconductor manufacturers have put more attention toward monitoring process inputs to prevent yield loss by early detecting change-point of the process. In the paper, we propose the method to efficiently monitor functional input variables in multi-phase semiconductor manufacturing process. Measured input variables in the multi-phase process tend to be of functional structured form. After data pre-processing for these functional input data, change-point analysis is practiced to the pre-processed data set. If process variation occurs, key variables affecting process variation are selected using contribution plot for monitoring efficiency. To evaluate the propriety of proposed monitoring method, we used real data set in semiconductor manufacturing process. The experiment shows that the proposed method has better performance than previous output monitoring method in terms of fault detection and process monitoring.