• Title/Summary/Keyword: Re-enforcement Learning

Search Result 1, Processing Time 0.018 seconds

Comparison of Deep Learning Activation Functions for Performance Improvement of a 2D Shooting Game Learning Agent (2D 슈팅 게임 학습 에이전트의 성능 향상을 위한 딥러닝 활성화 함수 비교 분석)

  • Lee, Dongcheul;Park, Byungjoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.2
    • /
    • pp.135-141
    • /
    • 2019
  • Recently, there has been active researches about building an artificial intelligence agent that can learn how to play a game by using re-enforcement learning. The performance of the learning can be diverse according to what kinds of deep learning activation functions they used when they train the agent. This paper compares the activation functions when we train our agent for learning how to play a 2D shooting game by using re-enforcement learning. We defined performance metrics to analyze the results and plotted them along a training time. As a result, we found ELU (Exponential Linear Unit) with a parameter 1.0 achieved best rewards than other activation functions. There was 23.6% gap between the best activation function and the worst activation function.