• 제목/요약/키워드: Re(Reynolds number)

검색결과 513건 처리시간 0.021초

휜의 피치 및 배열 방식에 따른 프리히터의 전열 성능에 관한 연구 (A Numerical Study on the Effect of Fin Pitch and Fin Array on the Heat Transfer Performance of a Pre-heater)

  • 유지훈;김귀순
    • 한국유체기계학회 논문집
    • /
    • 제16권6호
    • /
    • pp.40-47
    • /
    • 2013
  • In this paper, a numerical study was performed to investigate the performance characteristics of a pre-heater. The effects of fin pitch and fin array type(in-line, staggered, leaned array) were reported in terms of Colburn j-factor and Fanning friction factor f, as a function of Re. Three-dimensional numerical simulation has been performed by using flow analysis program, FLUENT 13.0. The results show that Colburn j-factor decreases with the decrease of fin pitch attached in the annular tube. But the fin pitch has little effect on f-factor. The staggered array and leaned array show improved heat transfer performance compared with in-line array, so that Colburn j-factor was increased. It also shows that the f-factor of leaned array is the highest in the studied range of Reynolds number.

Advancing drag crisis of a sphere via the manipulation of integral length scale

  • Moradian, Niloofar;Ting, David S.K.;Cheng, Shaohong
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.35-53
    • /
    • 2011
  • Spherical object in wind is a common scenario in daily life and engineering practice. The main challenge in understanding the aerodynamics in turbulent wind lies in the multi-aspect of turbulence. This paper presents a wind tunnel study, which focuses on the role of turbulence integral length scale ${\Lambda}$ on the drag of a sphere. Particular turbulent flow conditions were achieved via the proper combination of wind speed, orifice perforated plate, sphere diameter (D) and distance downstream from the plate. The drag was measured in turbulent flow with $2.2{\times}10^4{\leq}Re{\leq}8{\times}10^4$, $0.043{\leq}{\Lambda}/D{\leq}3.24$, and turbulence intensity Tu up to 6.3%. Our results confirmed the general trends of decreasing drag coefficient and critical Reynolds number with increasing turbulence intensity. More interestingly, the unique role of the relative integral length scale has been revealed. Over the range of conditions studied, an integral length of approximately 65% the sphere diameter is most effective in reducing the drag.

고선회 터빈 동익 팁 표면에서의 열전달 특성 (Heat Transfer Characteristics on the Tip Surface of a High-Turning Turbine Rotor Blade)

  • 이상우;문현석
    • 대한기계학회논문집B
    • /
    • 제32권3호
    • /
    • pp.207-215
    • /
    • 2008
  • The heat/mass transfer characteristics on the plane tip surface of a high-turning first-stage turbine rotor blade has been investigated by employing the naphthalene sublimation technique. At the Reynolds number of $2.09{\times}10^5$, heat/mass transfer coefficients are measured for the tip gap height-to-chord ratio, h/c, of 2.0% at turbulence levels of Tu = 0.3 and 14.7%. A tip-surface flow visualization is also performed for h/c = 2.0% at Tu = 0.3%. The results show that there exists a strong flow separation/re-attachment process, which results in severe local thermal load along the pressure-side corner, and a pair of vortices named "tip gap vortices" in this study is identified along the pressure and suction-side tip corners near the leading edge. The loci and subsequent development of the pressure- and suction-side tip gap vortices are discussed in detail. The combustor-level high inlet turbulence, which increases the tip-surface heat/mass transfer, provides more uniform thermal-load distribution.

조개 표면의 종방향 그루브가 공력성능에 미치는 영향 (Effect of longitudinal grooves of the scallop surface on aerodynamic performance)

  • 김태훈;최해천
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2419-2421
    • /
    • 2008
  • Some of the scallops like Amesium balloti have an excellent level-swimming ability, i.e. they can swim about 20m by single level swimming with a maximum swimming velocity of about 1.6m/s in the sea. On the other hand, some species like Patinopecten yessoensis have longitudinal grooves on the upper and lower surfaces and others do not. Therefore, in the present study, we measure the lift and drag forces on a real scallop model (Patinopecten yessoensis) in a wind tunnel. Experiments are performed at the Reynolds number of 75,000 based on the maximum chord length, which is within the swimming condition of real scallop (Re = $30,000{\sim}300,000$). To see the effect of longitudinal grooves, we measure the aerodynamic forces on a scallop model by removing the grooves. With the grooves, the lift force increases at low angles of attack (${\alpha}<10^{\circ}$). The drag force increases slightly at all the attack angles considered. The lift-to-drag ratio is increased by about 10% at ${\alpha}<10^{\circ}$.

  • PDF

Hydrodynamic and Heat Transfer Studies in Riser System for Waste Heat Recovery using Chalcopyrite

  • Popuri, Ashok Kumar;Garimella, Prabhakar
    • Korean Chemical Engineering Research
    • /
    • 제56권2호
    • /
    • pp.252-260
    • /
    • 2018
  • Energy, a critical input, is to be efficiently managed via waste heat recovery and energy reuse for the economic viability of a process industry. In particular, cement manufacture demands a huge quantum of energy, for the necessary reactions. Huge amounts of hot effluent gases are generated. Energy recovery from these waste gases is an area that is of contemporary research interest. Now, about 75% of total heat recovery takes place in the riser of the suspension pre-heater system. This article deals with the hydrodynamic and heat transfer aspects of riser typically used in the cement industry. An experimental apparatus was designed and fabricated with provision for the measurement of gas pressure and solid temperatures at different heights of the riser. The system studied was air - chalcopyrite taken in different particle sizes. Acceleration length ($L_A$) determined at different parametric levels was fitted to an empirical correlation: $L_A/d_t=4.91902(d_p/d_t)^{0.10058}(w_s/w_g)^{-0.11691}(u_g{\mu}_g/d_t^2g{\rho}_g)^{0.28574}({\rho}_p/{\rho}_g)^{0.42484}$. An empirical model was developed for Nusselt number as a function of Reynolds and Prandtl numbers using regression analysis: $Nu=0.40969(Re_p)^{0.99953}(Pr)^{0.03569}$.

Elliptic Feature of Coherent Fine Scale Eddies in Turbulent Channel Flows

  • Kang Shin-Jeong;Tanahashi Mamoru;Miyauchi Toshio
    • Journal of Mechanical Science and Technology
    • /
    • 제20권2호
    • /
    • pp.262-270
    • /
    • 2006
  • Direct numerical simulations (DNS) of turbulent channel flows up to $Re_{\tau}=1270$ are performed to investigate an elliptic feature and strain rate field on cross sections of coherent fine scale eddies (CFSEs) in wall turbulence. From DNS results, the CFSEs are educed and the strain rate field around the eddy is analyzed statistically. The principal strain rates (i.e. eigenvalues of the strain rate tensor) at the CFSE centers are scaled by the Kolmogorov length $\eta$ and velocity $U_k$. The most expected maximum (stretching) and minimum (compressing) eigenvalues at the CFSE centers are independent of the Reynolds number in each $y^+$ region (i. e. near-wall, logarithmic and wake regions). The elliptic feature of the CFSE is observed in the distribution of phase-averaged azimuthal velocity on a plane perpendicular to the rotating axis of the CFSE $(\omega_c)$. Except near the wall, phase-averaged maximum $(\gamma^{\ast}/\gamma_c^{\ast})$ and minimum $(\alpha^{\ast}/\alpha_c^{\ast})$ an eigenvalues show maxima on the major axis around the CFSE and minima on the minor axis near the CFSE center. This results in high energy dissipation rate around the CFSE.

난류경계층의 3차원 헤어핀 다발구조에 대한 실험적 연구 (Experimental Study on the Three-Dimensional Topology of Hairpin Packet Structures in Turbulent Boundary Layers)

  • 권성훈;윤상열;김경천
    • 대한기계학회논문집B
    • /
    • 제28권7호
    • /
    • pp.834-841
    • /
    • 2004
  • Experimental study on the three-dimensional topology of hairpin packet structures in turbulent boundary layers were carried out. Two different Reynolds number based on momentum thickness, Re$\sub$$\theta$/=514 and 934 were generated in a blowing type wind tunnel under the condition of zero pressure gradient. Simultaneous measurements of velocity fields at a wall-normal plane and wall-parallel plane by a plane PIV and a Stereo-PIV systems. The two Nd:Yag laser systems and three CCD cameras were synchronized to obtain instantaneous velocity fields at the same time. To avoid optical noise at the crossing line by the two laser light sheets, a new optical arrangement using polarization was applied. The obtained velocity fields show the existence of hairpin packet structure vividly and the idealized hairpin vortex signature is confirmed by experiment. Two counter-rotating vortex pair which reflects the cutting plane of hairpin legs are found both side of a strong streaky structure when the wall-normal plane cuts the hairpin head.

자유흐름 속도의 이동면과 맞닿은 회전실린더 주위 유동장의 실험적 해석 (An experimental study of a flow field generated by a rotating cylinder on a plane moving at free stream velocity)

  • 박운진
    • 대한기계학회논문집B
    • /
    • 제21권5호
    • /
    • pp.700-712
    • /
    • 1997
  • The flowfield generated by a 2-D rotating cylinder on a plane moving at freestream velocity was experimentally investigated in a wind tunnel to simulate aerodynamic characteristics of rotating wheels of an automobile. In the flowfield around a rotating cylinder at 3*10$^{3}$ < Re$_{d}$<8*10$^{3}$, unique mean flow and turbulence characteristics were confirmed by hot-wire measurements as well as frequency analysis, which was supported by flow visualization. In the vicinity of a rotating cylinder, a unique turbulence structure on .root.over bar u'$^{2}$ profiles was formed in hump-like shape at 1 < y/d < 3. A peak frequency which characterized the effect of a rotating cylinder had the same value of the rotation rate of a cylinder. In case of cylinder rotation, the depths of mean velocity -defect and turbulent-shear regions were thickened by 20-40% at 0 < x/d < 10 compared with the case of cylinder stationary. Far downstream beyond x/d > 10, the flowfield generated by a rotating cylinder showed self-similarity in the profiles of mean velocity and turbulence quantities. The effect of a rotating cylinder was independent of its rotation rate and Reynolds number in the measurement range.

Experimental and numerical studies of the flow around the Ahmed body

  • Tunay, Tural;Sahin, Besir;Akilli, Huseyin
    • Wind and Structures
    • /
    • 제17권5호
    • /
    • pp.515-535
    • /
    • 2013
  • The present study aims to investigate characteristics of the flow structures around the Ahmed body by using both experimental and numerical methods. Therefore, 1/4 scale Ahmed body having $25^{\circ}$ slant angle was employed. The Reynolds number based on the body height, H and the free stream velocity, U was $Re_H=1.48{\times}10^4$. Investigations were conducted in two parts. In the first part of the study, Large Eddy Simulation (LES) method was used to resolve the flow structures around the Ahmed body, numerically. In the second part of the study the particle image velocimetry (PIV) technique was used to measure instantaneous velocity fields around the Ahmed body. Time-averaged and instantaneous velocity vectors maps, streamline topology and vorticity contours of the flow fields were presented and discussed in details. Comparison of the mean and turbulent quantities of the LES results and the PIV results with the results of Lienhart et al. (2000) at different locations over the slanted surface and in the wake region of the Ahmed body were also given. Flow features such as critical points and recirculation zones in the wake region downstream of the Ahmed body were well captured. The spectra of numerically and experimentally obtained stream-wise and vertical velocity fluctuations were presented and they show good consistency with the numerical result of Minguez et al. (2008).

소구경 전열관 내의 열전달촉진 형상변화에 따른 열전달 및 압력강하 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of the Heat Transfer and the Pressure Drop inside the Small Diameter Tube with the Heat Transfer Enhancing Geometry)

  • 박찬우;진성민;정종수
    • 설비공학논문집
    • /
    • 제18권4호
    • /
    • pp.297-303
    • /
    • 2006
  • Friction and heat transfer coefficients were measured inside the corrugated tube using water as the working fluid. The test is performed for 16 tubes which outer diameter of tubes are 12.7 mm. These specifications are 4 indentation depths and 4 indentation pitches, respectively. The range of the water velocity inside the tube is from 0.5 to 3.0 m/s (8,500