• 제목/요약/키워드: Rc

검색결과 5,433건 처리시간 0.029초

효율적인 재해석 기법에 의한 철근콘크리트 교각의 최적설계 (Optimization of Reinforced Concrete Piers Based on Efficient Reanalysis Technique)

  • 조효남;민대홍;신만규
    • 한국전산구조공학회논문집
    • /
    • 제14권4호
    • /
    • pp.505-513
    • /
    • 2001
  • 본 연구에서는 지진하중을 받는 철근콘크리트(Reinforced Concrete : RC) 교각의 효율적인 최적설계 알고리즘을 제안하였다. 제안한 RC 교각 최적설계 알고리즘은 효율적인 강도재해석 기법을 기초로 하고 있다. 또한 RC 교각의 특성을 고려하여 제약조건 소거기법과 같은 근사화 기법을 도입 하였다. 기존의 최적설계 방법 비교를 통해 제안한 RC 교각의 최적설계 방법의 효율성과 신뢰성을 비교하였다. 그리고 시방서의 내진 규정에 따른 수치예제를 통하여 제안한 강도재해석기법에 의한 새로운 알고리즘이 기존의 최적설계 방법에 비해 효율성과 신뢰도가 우수하다는 것을 입증하였다.

  • PDF

Experimental study on RC frame structures strengthened by externally-anchored PC wall panels

  • Choi, Seung-Ho;Hwang, Jin-Ha;Lee, Deuck Hang;Kim, Kang Su;Zhang, Dichuan;Kim, Jong Ryeol
    • Computers and Concrete
    • /
    • 제22권4호
    • /
    • pp.383-393
    • /
    • 2018
  • Infill wall strengthening method has been widely used for seismic strengthening of deteriorated reinforced concrete (RC) frame structures with non-seismic details. Although such infill wall method can ensure sufficient lateral strengths of RC frame structures deteriorated in seismic performances with a low constructional cost, it generally requires quite cumbersome construction works due to its complex connection details between an infill wall and existing RC frame. In this study, an advanced seismic strengthening method using externally-anchored precast wall panels (EPCW) was developed to overcome the disadvantage inherent in the existing infill wall strengthening method. A total of four RC frame specimens were carefully designed and fabricated. Cyclic loading tests were then conducted to examine seismic performances of RC frame specimens strengthened using the EPCW method. Two specimens were fully strengthened using stocky precast wall panels with different connection details while one specimen was strengthened only in column perimeter with slender precast wall panels. Test results showed that the strength, stiffness, and energy dissipation capacity of RC frame specimens strengthened by EPCWs were improved compared to control frame specimens without strengthening.

${\mu}$-GA에 의한 RC 중공슬래브교의 최적보강 (Optimal strengthening in RC Hollow Slab Bridges using ${\mu}$-GA)

  • 최세휴;박경식
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.169-178
    • /
    • 2010
  • 본 연구에서는 RC 중공슬래브교의 내하력을 향상시키기 위한 외부 프리스트레싱을 이용한 보강에 있어서 마이크로 유전알고리즘(${\mu}$-GA)을 이용한 최적보강방법을 제시하였다. 최적보강을 위한 보강 유형으로 Queen-post 유형과 King-post 유형이 고려되었다. 마이크로 유전알고리즘을 이용하여 RC 중공슬래브교의 최적보강을 위한 보강 유형과 편향재, 긴장재 면적, 필요한 앵커 개수 등을 산정 하였다. 목적함수는 보강에 사용된 긴장재와 강재비용을 무차원화하여 구성하였으며, 제약조건은 교량과 앵커설계를 위한 시방서 내용을 고려하여 형성하였다. RC 중공슬래브교의 보강설계를 실시한 후 그 결과를 분석하여 제안된 방법의 타당성을 제시하였다.

터치스크린 패널의 회로 모델링 및 분석 (Circuit Modeling and Analysis of Touch Screen Panel)

  • 변기식;민병욱
    • 한국전자파학회논문지
    • /
    • 제25권1호
    • /
    • pp.47-52
    • /
    • 2014
  • 본 논문에서는 대면적 정전식 터치스크린 구동 회로를 설계하기 위하여 여러 가지 터치스크린 패널 구조의 회로 모델을 제안하고, 그 모델의 사용 가능한 주파수 영역을 분석하였다. 터치스크린 패널 한 개 셀의 2D EM 시뮬레이션 결과를 이용한 전체 패널의 circuit 시뮬레이션을 통하여, 23인치 대면적 패널의 가장 긴 채널과 짧은 채널을 5개의 RC 소자의 회로 모델로 근사하였다. EM/circuit 시뮬레이션과 5개 소자의 RC 모델의 S 파라미터 비교를 통해, 5개 소자 모델이 130 kHz까지 10도 이내의 채널 위상 차이를 가지는 것을 확인하였다. 7개 RC 소자를 사용한 모델을 통하여 10도 이내의 채널 위상 차이를 가지는 모델의 주파수 영역을 200 kHz까지 확장하였다.

Flexural strengthening of RC Beams with low-strength concrete using GFRP and CFRP

  • Saribiyik, Ali;Caglar, Naci
    • Structural Engineering and Mechanics
    • /
    • 제58권5호
    • /
    • pp.825-845
    • /
    • 2016
  • The Turkish Earthquake Code was revised in 1998 and 2007. Before these Codes, especially 1998, reinforced concrete (RC) beams with low flexural and shear strength were widely used in the building. In this study, the RC specimens have been produced by taking into consideration the RC beams with insufficient shear and tensile reinforcement having been manufactured with the use of concrete with low strength. The performance of the RC specimens strengthened with different wrapping methods by using of Carbon Fibre Reinforced Polymer (CFRP) and Glass Fibre Reinforced Polymer (GFRP) composites have been examined in terms of flexural strength, ductility and energy absorption capacity. In the strengthening of the RC elements, the use of GFRP composites instead of CFRP composites has also been examined. For this purpose, the experimental results of the RC specimens strengthened by wrapping with CFRP and GFRP are presented and discussed. It has been concluded that although the flexural and shear strengths of the RC beams strengthened with GFRP composites are lower than those of beams reinforced with CFRP, their ductility and energy absorption capacities are very high. Moreover, the RC beams strengthened with CFRP fracture are more brittle when compared to GFRP.

Strength Demand of Hysteretic Energy Dissipating Devices Alternative to Coupling Beams in High-Rise Buildings

  • Choi, Kyung-Suk;Kim, Hyung-Joon
    • 국제초고층학회논문집
    • /
    • 제3권2호
    • /
    • pp.107-120
    • /
    • 2014
  • A Reinforced concrete (RC) shear wall system with coupling beams has been known as one of the most promising structural systems for high-rise buildings. However, significantly large flexural and/or shear stress demands induced in the coupling beams require special reinforcement details to avoid their undesirable brittle failure. In order to solve this problem, one of promising candidates is frictional hysteretic energy dissipating devices (HEDDs) as an alternative to the coupling beams. The introduction of frictional HEDDs into a RC shear wall system increases energy dissipation capacity and maintains the frame action after their yielding. This paper investigates the strength demands (specifically yield strength levels) with a maximum allowable ductility of frictional HEDDs based on comparative non-linear time-history analyses of a prototype RC shear wall system with traditional RC coupling beams and frictional HEDDs. Analysis results show that the RC shear wall systems coupled by frictional HEDDs with more than 50% yield strength of the RC coupling beams present better seismic performance compared to the RC shear wall systems with traditional RC coupling beams. This is due to the increased seismic energy dissipation capacity of the frictional HEDD. Also, it is found from the analysis results that the maximum allowable ductility demand of a frictional HEDD should increase as its yield strength decreases.

폐콘크리트 재생골재로부터의 오염물질 용출에 대한 실험적 고찰 (Pollutant Release from Crushed Reclaimed Concrete)

  • 홍성구
    • 한국농공학회논문집
    • /
    • 제47권1호
    • /
    • pp.71-77
    • /
    • 2005
  • Recycling of reclaimed concrete (RC) is very important in the management of construction and demolition wastes. Most of RC is utilized for land-filling after crushing in this country. In this study, a series of elution experiments were conducted to investigate the type and amount of pollutants released from the crushed RC. Most water quality parameters including heavy metals and some organic compounds were below standards for drinking water. Some of heavy metals such as As, Cd, Pb, Hg were detected in 0.5 N H2S04 solution after 24-hour immersing RC, which was conducted for evaluating a long term release effect. The concentration of the heavy metals were higher than the drinking water standards. The results also showed significant adsorption of heavy metals by crushed Re. Potential risks, based on the result of this study were not high in using crushed RC for land-filling. Appropriate management of RC would reduce the risk, for example the separation of hazardous materials from construction wastes. Long term evaluations for the sites of land filled with RC would be required to assess the environmental impacts.

Application of an extended Bouc-Wen model for hysteretic behavior of the RC structure with SCEBs

  • Dong, Huihui;Han, Qiang;Du, Xiuli
    • Structural Engineering and Mechanics
    • /
    • 제71권6호
    • /
    • pp.683-697
    • /
    • 2019
  • The reinforced concrete (RC) structures usually suffer large residual displacements under strong motions. The large residual displacements may substantially reduce the anti-seismic capacity of structures during the aftershock and increase the difficulty and cost of structural repair after an earthquake. To reduce the adverse residual displacement, several self-centering energy dissipation braces (SCEBs) have been proposed to be installed to the RC structures. To investigate the seismic responses of the RC structures with SCEBs under the earthquake excitation, an extended Bouc-Wen model with degradation and self-centering effects is developed in this study. The extended model realized by MATLAB/Simulink program is able to capture the hysteretic characteristics of the RC structures with SCEBs, such as the energy dissipation and the degradation, especially the self-centering effect. The predicted hysteretic behavior of the RC structures with SCEBs based on the extended model, which used the unscented Kalman filter (UKF) for parameter identification, is compared with the experimental results. Comparison results show that the predicted hysteretic curves can be in good agreement with the experimental results. The nonlinear dynamic analyses using the extended model are then carried out to explore the seismic performance of the RC structures with SCEBs. The analysis results demonstrate that the SCEB can effectively reduce the residual displacements of the RC structures, but slightly increase the acceleration.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Carbonation depth estimation in reinforced concrete structures using revised empirical model and oxygen permeability index

  • Chandra Harshitha;Bhaskar Sangoju;Ramesh Gopal
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.241-252
    • /
    • 2023
  • Corrosion of rebar is one of the major deteriorating mechanisms that affect the durability of reinforced concrete (RC) structures. The increase in CO2 concentration in the atmosphere leads to early carbonation and deterioration due to corrosion in RC structures. In the present study, an attempt has been made to modify the existing carbonation depth prediction empirical model. The modified empirical model is verified from the carbonation data collected from selected RC structures of CSIR-SERC campus, Chennai and carbonation data available from the reported literature on in-situ RC structures. Attempt also made to study the carbonation depth in the laboratory specimens using oxygen permeability index (OPI) test. The carbonation depth measured from RC structures and laboratory specimens are compared with estimated carbonation depth obtained from OPI test data. The modified empirical model shows good correlation with measured carbonation depth from the identified RC structures and the reported RC structures from the literature. The carbonation depth estimated from OPI values for both in-situ and laboratory specimens show lesser percentage of error compared to measured carbonation depth. From the present investigation it can be said that the OPI test is the suitable test method for both new and existing RC structures and laboratory RC specimens.