• Title/Summary/Keyword: Rb-82 PET

Search Result 10, Processing Time 0.03 seconds

Stress/Rest Tc-99m-MIBI SPECT in Comparison with Rest/Stress Rubidium-82 PET (휴식/부하 심근 Rubidium-82 양전자단층촬영과 부하/휴식 심근 Tc-99m-MIBI 단일광자단층촬영의 비교)

  • Lee, D.S.;Kang, K.W.;Lee, K.H.;Jeong, J.M.;Kwark, C.;Chung, J.K.;Lee, M.C.;Seo, J.D.;Koh, C.S.
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.31-40
    • /
    • 1995
  • We compared stress/rest myocardial Tc-99m-MIBl tomographic image findings with rest/stress rubidium-82 tomographic images. In 23 patients with coronary artery disease (12 of them received bypass grafts before) and 6 normal subjects, rest rubidium PET study was performed : rubidium-82 and Tc-99m-MIBI were injected simultaneously to each patient after dipyridamole stress for rubidium PET and MIBI SPECT; and rest MIBI SPECT was performed 4 hours thereafter. We scored segmental decrease of rubidium or MIBI uptakes into 5 grades for 29 segments from 3 short-axis, vertical and horizontal slices. Scores were summed for each major arterial territory. When more score than two grade-2's or one grade-3 was considered as the cue for significant stenosis for major arterial territories, 67% of 46 stenosed arteries were found with MIBI studies and 78% of them by rubidium studies. Fourteen among 28 grafted arterial territories of 12 post-CABG patients were found normal with both rubidium and MIBI. Segmental scores were concordant between rubidium and MIBI in 72% of 709 stress segments and in 80% of 825 rest segments. Stress rubidium segmental scores were less than stress MIBI scores in 9%, so were rest rubidium scores. Stress rubidium scores were more than stress MIBI scores in 20% of segments, and rest rubidium segmental scores were more than rest MIBl scores in 11%. Rank correlations (Spearman's rho's more than 0.7(stress) and 0.5(rest), slopes (MIBI/rubidium) around 0.7(stress) and 0.9 (rest)) suggested deeper and wider defects in stress with rubidium. Slope over 1 (MIBI/rubidium) with LAD segemental scores at rest and 7 territories which had much larger score with MIBI revealed exaggeration of rest defects with rest MIBI in same-day stress/rest study. Difference scores (stress-rest for each territory) suggesting Ischemia were larger with rubidium (slope of MIBI/rubidium around 0.45). As has been implied by animal or separate-day-human studies, these segmental analyses with simultaneous examination in patients told that rubidium PET flow studies disclose ischemia more often than MIBI studies and that rest MIBI studies in same-day stress/rest-sequence gave a little larger rest defect than they would have shown.

  • PDF

Development of an exclusive column method for 82Sr/82Rb generator using a 100 MeV proton linear accelerator of KOMAC

  • Kye-Ryung Kim;Yeong Su Ha;Sang-Pil Yoon;Yeon-ji Lee;Yong-Sub Cho;Hyeongi Kim;Sang-Jin Han;Jung Young Kim;Kyo Chul Lee;Jin Su Kim
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.7 no.2
    • /
    • pp.119-125
    • /
    • 2021
  • 82Sr for 82Rb generator was produced through the irradiation of the proton beam on the nat.RbCI target at the target irradiation facility installed at the end of the Rl-dedicated beamline of the 100 MeV proton linear accelerator of KOMAC (Korea Multi-purpose Accelerator Complex). The average current of the proton beam was 1.2 µA for irradiation time of 150 min. For the separation and purification of the 82Sr from nat.RbCI irradiated, Chelex-100 resin was used. The activities of 82Sr in the irradiated nat.RbCI target solution and after purification were 45.29 µCi and 43.4 µCi, respectively. The separation and purification yield was 95.8%. As an adsorbent to be filled in the generator for 82Sr adsorption hydrous tin oxide was selected. The adsorption yield of 82Sr into the generator adsorbent was > 99 %, and the total amount of 82Sr adsorbed to the generator was 21.6 µCi as of the day of the 82Rb elution experiment. When the elution amount was 22 mL, the maximum82Rb elution yield was 93.3%, and the elution yield increased as the flow rate increased. After the eluted 82Rb was filled in the correction phantom of the small PET for animals, a PET image was taken. The image scan time was set to 5 min, and the phantom PET image was successfully obtained. As results of impurity analysis on eluted 82Rb using ICP-MS, nat.Rb stable isotopes that compete in vivo of 82Rb were identified as undetected levels and were determined to be No-Carrier-Added (NCA).

Regional Myocardial Blood Flow Estimation Using Rubidium-82 Dynamic Positron Emission Tomography and Dual Integration Method (Rubidium-82 심근 Dynamic PET 영상과 이중적분법을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • 곽철은;정재민
    • Journal of Biomedical Engineering Research
    • /
    • v.16 no.2
    • /
    • pp.223-230
    • /
    • 1995
  • This study investigates a combined mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery occlusion and in patients with ischemic myocardial diseases using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Thirty four Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and six to seven regions of interest were drawn on each transaxial slices, one on left ventricular chamber for input function and the others on normal and decreased perfusion myocardial segments for the flow estimation in those regions. Two compartment model and graphical analysis method have been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the two parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (I) two compartment model suggested by Kety-Schmidt, with proper modification of the measured data and volume of distribution, could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion in previously used graphical analysis, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

A Study on the Estimation of Regional Myocardial Blood Flow in Experimental Canine Model with Coronary Thrombosis using Rb-82 Dynamic Myocardial Positron Emission Tomography (실험 개에서 Rb-82 심근 Dynamic PET 영상을 이용한 국소 심근 혈류 예측의 기본 모델 연구)

  • Kwark, Cheol-Eun;Lee, Dong-Soo;Kang, Keon-Wook;Hwang, Eun-Kyung;Jeong, Jae-Min;Chang, Kee-Hyun;Chung, June-Key;Lee, Myung-Chul;Seo, Joung-Don;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.29 no.1
    • /
    • pp.48-53
    • /
    • 1995
  • This study investigates a simple mathematical model for the quantitative estimation of regional myocardial blood flow in experimental canine coronary artery thrombosis using Rb-82 dynamic myocardial positron emission tomography. The coronary thrombosis was induced using the new catheter technique by narrowing the lumen of coronary vessel gradually, which finally led to partial obstruction of coronary artery. Ten Rb-82 dynamic myocardial PET scans were performed sequentially for each experiment using our 5, 10 and 20 second acquisition protocol, respectively, and three regions of interest were drawn on the transaxial slices, one on left ventricular chamber for input function and the other two on normal and decreased perfusion segments for the flow estimation in those regions. Single compartment model has been applied to the measured sets of regional PET data, and the rate constants of influx to myocardial tissue were calculated for regional myocardial flow estimates with the three parameter fits of raw data by the Levenberg-Marquardt method. The results showed that, (1) single compartment model suggested by Kety-Schmidt could be used for the simple estimation of regional myocardial blood flow, (2) the calculated regional myocardial blood flow estimates were dependent on the selection of input function, which reflected partial volume effect and left ventricular wall motion, and (3) mathematically fitted input and tissue time activity curves were more suitable than the direct application of the measured data in terms of convergence.

  • PDF

Preparation of $^{82}Sr/^{82}Rb$ Generator and Positron Emission Tomographic Image of Normal Volunteer ($^{82}Sr/^{82}Rb$ 발생기의 제조 및 정상인 심근의 양전자 단층촬영상)

  • Jeong, Jae-Min;Chung, June-Key;Lee, Dong-Soo;Kwark, Cheol-Eun;Lee, Kyung-Han;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.28 no.3
    • /
    • pp.326-330
    • /
    • 1994
  • A $^{82}Sr/^{82}Rb$ generator was prepared by loading $^{82}Sr$ to preconditioned tin dioxide column. The generator was eluted by normal saline with flow rate up to 8m1/min, and the eluted radioactivity was monitored by dose calibrator. Radioactivity began to come out at 5ml and reached to peak around 9ml. The total eluted radioactivity increased linearly with flow rate, and the maximum obtained radioactivity was 35mCi at 8m1/min. The $^{82}Rb$ preparation was proven to be free from both strontium radioactivity and pyrogen. The $^{82}Rb$ was injected to normal female volunteer and positron emission tomographic Image of heart was obtained successfully.

  • PDF

Comparative study of 82Sr separation/purification methods used at Brookhaven National Laboratory and ARRONAX

  • Ha, Yeong Su;Yoon, Sang-Pil;Kim, Han-Sung;Kim, Kye-Ryung
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.71-78
    • /
    • 2019
  • Nuclear imaging is one of the most powerful measures for non-invasive diagnosis of myocardial vascular disease. Radionuclide such as 13N, 15O, 201Tl and 82Rb is used for the measurement of cardiac blood flow. 13N, 15O and 201Tl are produced in cyclotrons while 82Rb is obtained from generator. Rubidium (Rb), an alkali ion, behaves biologically like potassium, and accumulates in myocardial tissue. Rb has rapid blood clearance profile which allows the use of 82Rb with a short physical half-life of 75 s for non-invasive evaluation of regional myocardial perfusion. There are several advantages of 82Rb over other radioisotopes. An ultra-short half-life significantly reduces the exposure of patients to radiation and allows to repeat injections for studying the effects of medical intervention. As a positron emitter, 82Rb allows positron emission tomography (PET) imaging which have shown superior diagnostic performances. 82Rb can be produced from generator by decay of its parent 82Sr. However, the preparation of 82Sr is difficult, because appropriate purity is required to meet the specification of the product. Recently reported procedure from ARRONAX research institute showed that a Chelex-100 resin is sufficient for this purpose and additional column is not necessary. Whereas Brookhaven National Laboratory (BNL) procedure contains three ion exchange resin separation, including Chelex-100 resin. Currently, since 82Sr production site is non-existent in Korea, Korea Atomic Energy Research Institute (KAERI) has plan to produce 82Sr within specifications. We compared 82Sr purification procedures reported from ARRONAX and BNL to investigate the most suitable procedure for our conditions.

Linearity Estimation of PET/CT Scanner in List Mode Acquisition (List Mode에서 PET/CT Scanner의 직선성 평가)

  • Choi, Hyun-Jun;Kim, Byung-Jin;Ito, Mikiko;Lee, Hong-Jae;Kim, Jin-Ui;Kim, Hyun-Joo;Lee, Jae-Sung;Lee, Dong-Soo
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.1
    • /
    • pp.86-90
    • /
    • 2012
  • Purpose: Quantification of myocardial blood flow (MBF) using dynamic PET imaging has the potential to assess coronary artery disease. Rb-82 plays a key role in the clinical assessment of myocardial perfusion using PET. However, MBF could be overestimated due to the underestimation of left ventricular input function in the beginning of the acquisition when the scanner has non-linearity between count rate and activity concentration due to the scanner dead-time. Therefore, in this study, we evaluated the count rate linearity as a function of the activity concentration in PET data acquired in list mode. Materials & methods: A cylindrical phantom (diameter, 12 cm length, 10.5 cm) filled with 296 MBq F-18 solution and 800 mL of water was used to estimate the linearity of the Biograph 40 True Point PET/CT scanner. PET data was acquired with 10 min per frame of 1 bed duration in list mode for different activity concentration levels in 7 half-lives. The images were reconstructed by OSEM and FBP algorithms. Prompt, net true and random counts of PET data according to the activity concentration were measured. Total and background counts were measured by drawing ROI on the phantom images and linearity was measured using background correction. Results: The prompt count rates in list mode were linearly increased proportionally to the activity concentration. At a low activity concentration (<30 kBq/mL), the prompt net true and random count rates were increased with the activity concentration. At a high activity concentration (>30 kBq/mL), the increasing rate of the prompt net true rates was slightly decreased while the increasing rate of random counts was increased. There was no difference in the image intensity linearity between OSEM and FBP algorithms. Conclusion: The Biograph 40 True Point PET/CT scanner showed good linearity of count rate even at a high activity concentration (~370 kBq/mL).The result indicates that the scanner is useful for the quantitative analysis of data in heart dynamic studies using Rb-82, N-13, O-15 and F-18.

  • PDF

Evaluation of Myocardial Blood Flow and Coronary Flow Reserve Using Positron Emission Tomography (양전자방출단층촬영을 이용한 심근혈류 및 관상동맥 혈류예비능 평가)

  • Lee, Byeong-Il;Bom, Hee-Seung
    • The Korean Journal of Nuclear Medicine
    • /
    • v.39 no.2
    • /
    • pp.118-123
    • /
    • 2005
  • Positron emission tomography (PET) serves as a gold standard for noninvasive in vivo measurement of myocardial blood flow (MBF) and coronary flow reserve (CFR). CFR can be defined as the ratio of maximally vasodilated MBF over its basal flow. It is an important parameter for the evaluation of functional severity of coronary stenosis and prognositification in various diseases such as dilated cardiomyopathy. $^{13}NH_3,\;H_2^{15}O,\;^{82}Rb$ are widely used radiopharmaceuticals for measuring MBF and CFR, This review introduces imaging techniques and its clinical utility. Cardiac application or PET and PET/CT is expected to be increased in near future.

Radiopharmaceuticals Used in Cardiac Imaging (심장영상에 이용되는 방사성의약품)

  • Hwang, Kyung-Hoon;Chung, Yong-An;Lee, Byeong-Il;Lee, Yu-Kyung;Lee, Min-Kyung;Choe, Won-Sick
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.174-178
    • /
    • 2009
  • Many radiopharmaceuticals have been developed and wildy used in the imaging cardiac function. Myocardial perfusion imaging (MPI) is a well established noninvasive method of assessing coronary blood flow and has been widely used in patients diagnosed or suspected with coronary artery diseases. The innovation of radiopharmaceuticals used in the cardiac imaging is one of the most important contributors to the development of nuclear cardiology. Thallium-201 and various technetium-99m agents have been globally used for myocardial perfusion SPEG, and N-13 ammonia (13NH3), rubidium-82 (82Rb), 0-15 water (H2150) for myocardial perfusion PET. As well as the cardiac perfusion studies, new radiopharmaceuticals that visualize fat metabolism or receptors of the sympathetic nervous system have successfully been applied to clinical practice. Useful information can be obtained for diagnosing coronary artery disease, evaluating patients' condition, or assessing therapeutic effects. In this review, we describe the characteristics and clinical usefulness of radiopharmaceuticals used for cardiac SPEG and PET.