• Title/Summary/Keyword: Rayon

Search Result 252, Processing Time 0.03 seconds

Effects of Treatment of Cellulase and Alkali on Physical Properties and Dyeability of Ramie/Man-Made Fiber Mixture Fabrics (셀룰라아제와 알칼리 처리에 의한 저마/인조섬유 교직물의 물성과 염색성 변화)

  • 김순심;최종명
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.25 no.5
    • /
    • pp.891-900
    • /
    • 2001
  • The purpose of this study were to evaluate the physical properties and dyeability of cellulase and alkali(NaOH, KOH) treated ramie/man-made fiber mixture fabrics. The mixture fabrics were plain weave made by rayon and polyester fiber as warp yarn, and ramie as weft yarn. The crease resistance, drape, tensile strength, and water absorbancy were measured for test fabrics. The K/S value of dyed fabrics were calculated using color difference meter. Also colorfastness to washing and sunlight of dyed fabrics were evaluated. The results obtained from this study were as follows: Thickness and weight per unit area of alkali treated two mixture fabrics(rayon/ramie, polyester/ramie) increased compared to those of untreated fabrics, but cellulase treated fabrics did not changed a little. And alkali treated rayon/ramie mixture fabrics showed more change than polyester/ramie mixture fabrics on the thickness and weight. Tensile strength and water absorbancy of cellulase treated fabrics decreased compared to those of untreated, but crease resistance increased. Crease resistance, tensile strength(warp direction), water absorbancy and drape of NaOH treated rayon/ramie mixture fabrics decreased compared to those of untreated, but tensile strength(weft direction) increased. Water absorbancy and drape of NaOH treated polyester/ramie mixture fabrics decreased compared to those of untreated, but crease resistance and tensile strength(weft direction) increased. Tensile strength of KOH treated two mixture fabrics increased compared to that of untreated, but water absorbancy and drape decreased. Total hand of cellulase and alkali treated rayon/ramie mixture fabrics was improved compared to untreated. Dyeability of treated mixture fabrics was increased compared to untreated.

  • PDF

Residential Humidifying Elements Comprizing Horizontal Corrugated Channels (수평 코류게이트 채널로 구성된 가정용 가습 소자)

  • Kim, Nae-Hyun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.9
    • /
    • pp.579-586
    • /
    • 2017
  • In this study, new materials and shapes for a residential humidifying element were investigated. These elements could replace the current Japanese folded-type rayon/PE elements. Samples were taken from three different materials - rayon/PET (50:50), kraft/PET (40:60), kraft/PET/carbon. Results showed that the humidification efficiencies of the new samples were lower than those of the Japanese product. The efficiencies were 59% for the Japanese product (rayon/PET), 62% for kraft/PET and 84% for kraft/PET/carbon. This could be due to lower rayon or kraft content in the present samples than that in the Japanese product. However, pressure drops in the present samples were significantly lower than that in the Japanese product, due to improved channel configuration. The humidification capacity at the same pumping power ($j_m/f^{1/3}$) was 60% to 82% higher for the kraft/PET/carbon sample compared with the Japanese product. Furthermore, the results are compared with theoretical predictions.

Effect of Stabilization Processing Conditions on the Thermal Shrinkage and the Thermal Stability of Rayon Fabrics Untreated and Surface-Treated with Phosphoric Acid (인산처리 유·무에 따른 레이온직물의 열수축과 열안정성에 미치는 안정화 공정 조건의 영향)

  • Cho, Donghwan;Lee, Jongmoon;Park, Jong Kyoo
    • Journal of Adhesion and Interface
    • /
    • v.5 no.3
    • /
    • pp.10-17
    • /
    • 2004
  • We investigated the effect of stabilization processing parameters on the thermal shrinkage, thermal stability and microstructure of rayon fabrics stabilized under various conditions such as heating rate, stabilization temperature, atmosphere gas, and chemical treatment. The presence and absence of phosphoric acid treatment and the heating rate have most importantly influenced the thermal shrinkage and the weight change of rayon fabrics. Especially, the phosphoric acid treatment decreases the reduction of thickness, length, and weight of the fabrics by about 80%, 20%, and 26%, respectively, in comparison with the untreated counterparts, showing the protective effectiveness of the thermal shrinkage involved. The thermal stability of stabilized rayon fabrics is also affected by all the processing conditions used: stabilization temperature, phosphoric acid treatment, atmosphere gas, and heating rate. In addition, the surface and diameter of the stabilized fiber significantly depend on the treatment of phosphoric acid prior to stabilization process.

  • PDF

A study of complex dyeing using natural dyestuffs - Focus on cellulose fiber - (천연염료의 복합염색에 관한 연구 - 셀룰로오즈계 섬유를 중심으로 -)

  • Kim, Mi Kyung;Kim, Taemi
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.4
    • /
    • pp.431-440
    • /
    • 2016
  • The purpose of this research is to revive the colors of combination dyeing and mixed dyeing with natural dyestuffs. The fabrics used were cotton and rayon. The natural dyestuffs used in this research were indigo, Phellodendron amurense, and Caesalpinia sappan. The effects of combination dyeing were as follows. First, all samples showed deeper colors. Second, according to the results of the surface K/S measurement, while the surface K/S of cotton was over 15, that of rayon was over 17. Third, the results of the light fastness measurement showed the superiority (by over grade 4) of all the samples, except in the case of rayon fiber sample no. 6 (which had been pre-dyed with indigo five times before being dyed with P. amurense once and then being dyed with C. sappan once). In the color fastness to washing measurement, all fibers showed superiority (by over grade 3~4). In addition, the color fastness to dry cleaning of all fibers was satisfactory or excellent (by over grade 3). Fourth, according to the results of the tensile strength measurement, it tended to decrease in the case of cotton and increase in the case of rayon. Fifth, the results of the density measurement showed that the density of cotton decreased by about 15~20% in the case of warp and 10% in the case of weft for all samples. The density of rayon decreased 20% in the case of warp for all samples and increased 30% in the case of weft for all samples.

Fatigue Phenomenon of Mechanical Properties in Tencel Fabrics by Repeated Washing & Shear and Tensile Deformation (반복세탁 및 전단·인정변형에 따른 텐셀직물의 피로도)

  • Kwon, Oh-Kyung;Yi, Chang-Mi;Kim, Myo-Hyang;Park, Hee-Ung
    • Fashion & Textile Research Journal
    • /
    • v.1 no.3
    • /
    • pp.288-295
    • /
    • 1999
  • This study was conducted to examine the fatigue phenomenon of mechanical properties in tencel fabrics by repeated washing & shear and tensile deformation. The obtained results are as follows. After performing repeated shear tensile deformation, RT of tencel showed higher increase rate than that of cotton and rayon, whereas its WT and EM was a smaller decrease rate than that of them. This means that tencel's resistance to tensile deformation was the greatest. In the repeated washing and shear tensile deformation, tencel's 2HB, 2HG and 2HG5 showed a remarkable increase rate. In terms of deformation frequency, the greatest change rate appeared at the time of 1000 cycles of repeated shear tensile deformation and 15 times of repeated washing. In the hand value and THV, KOSHI showed a higher increase rate for tencel than for cotton and rayon in both repeated washing and shear tensile deformation, and NUMERI showed a higher increase rate. In the THV the change rate of rayon and cotton could be rarely seen but for tencel, it decreased. tencel's change rate of thermal insulation value by materials was 1.08%, and it increased as the washing frequency increased, compared to the grey fabrics, whereas the change rates of cotton and rayon were 0.74% and 0.22%, respectively. The qmax decreased in the order of cotton>tencel>rayon as the washing frequency increased.

  • PDF

A Study on the Commercial Potential of Natural Dyeing of Functional Lyocell Containing Zinc Oxide (산화아연 함유 기능성 리오셀의 천연염색 상용화 가능성에 관한 연구)

  • Kim, Sojin;Choi, Kyoungmi
    • Journal of Fashion Business
    • /
    • v.26 no.4
    • /
    • pp.100-111
    • /
    • 2022
  • After the corona pandemic, when consumers choose clothes, the issue of sustainability has become a more important selection criterion. The eco-friendly functional fiber used in the study is a smartcell, which has functions such as UV protection, decomposition of harmful substances, deodorization, antibacterial and biodegradation. This eco-friendly functional fiber was dyed using five kinds of natural dyes to examine the color change according to dyeability and dyeing conditions. As natural dyes, gardenia, turmeric, sappan wood, lac, and indigo were used. For comparison with smartcell, rayon, a cellulose regenerated fiber, and wool fiber, a protein fiber, were dyed under the same conditions to compare dyeability and color. The study results are as follows. It was found that smartcell had superior dyeability compared to rayon and wool in gardenia dye and showed lower dyeability than wool when dyeing turmeric, sappan wood, and lac dyes, but showed superior or similar dyeability than rayon. In case of indigo dyeing, the dyeability of smartcell was the best when dyed once, but it was found that smartcell had a lower effect on repeated dyeing compared to wool or rayon. Therefore, smartcell has superior dyeability compared to rayon fiber in gardenia, turmeric, sappan wood, and lac dyeing, and in case of indigo dyeing, it is suitable for light dyeing. When smartcell is produced as textile fashion products, natural dyeing is actively introduced and commercialized, and it is hoped that this study can be a reference material.

Dyeing and Fastness Properties of Vat Dyes on a Novel Regenerated Cellulosic Fiber

  • Lee Jung Jin;Shim Woo Sub;Kim Ik Soo;Kim Jae PH
    • Fibers and Polymers
    • /
    • v.6 no.3
    • /
    • pp.244-249
    • /
    • 2005
  • enVix is a novel regenerated cellulosic fiber, which is prepared from cellulose diacetate fiber using environmentally friendly manufacturing process. Vat dyeing properties of the enVix were investigated and compared with those ofregular viscose rayon. The enVix exhibited better dyeability than viscose rayon. The colour yields of vat dyes on the enVix were found to be dependent on dyeing temperature as well as the amount of levelling agent and salt. Good build-up and good to excellent fastness properties were obtained on the en Vix fabric.

Mechanical and Thermal Properties of Phenolic Composite reinforced with Hybrid of PAN-based/Rayon-based Carbon Fabrics (PAN계/Rayon계 탄소 직물 하이브리드 복합재료의 역학적 특성 및 열적 특성에 관한 연구)

  • Kim, Jae-Hong;Park, Jong-Kyu;Jung, Kyung-Ho;Kang, Tae-Jin
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.98-101
    • /
    • 2005
  • The mechanical and thermal properties of PAN-based/Rayon-based carbon fabrics interply hybrid composite materials have been studied. Mechanical properties was improved with increasing amount of continuous PAN-based carbon fabrics. The erosion rate was calculated through torch test. The thermal conductivity of hybrid of spun PAN-based/continuous rayon-based carbon fabric is lower than others.

  • PDF

Development of microporous activated carbon using a polymer blend technique and its behavior towards methylene blue adsorption

  • Manocha, S.;Brahmbhatt, Amit
    • Carbon letters
    • /
    • v.12 no.2
    • /
    • pp.85-89
    • /
    • 2011
  • Coloured wastewater is released as a direct result of the production of dyes as well as from various other chemical industries. Many dyes and their breakdown products may be toxic for living organisms. Activated carbon is one of the best materials for removal of dyes from aqueous solutions. The present study describes the adsorption behaviour of methylene blue dye on three microporous activated carbons, where two samples (AC-1 and AC-2) were prepared by a polymer blend technique and the other is a microporous activated carbon (ARY-3) sample from viscose rayon yarn prepared by chemical-physical activation. The effects of contact time and activated carbon dosage on decolourisation capacity have been studied. The results show that activated carbon having mixed microporosity and mesoporosity show tremendous decolourisation capacity for methylene blue. In addition, the activated carbon in the powder form prepared by the polymer blend technique shows better decolourisation capacity for methylene blue than the activated rayon yarn sample.

Printing Properties of Novel Regenerated Cellulosic Fibers

  • Kim, Ik-Soo;Koh, Joon-Seok;Han, Nam-Keun;Kim, Jae-Pil
    • Fibers and Polymers
    • /
    • v.5 no.3
    • /
    • pp.219-224
    • /
    • 2004
  • The reactive printing properties of regular viscose rayon and a new regenerated cellulosic fiber (en Vix^{\textregistered}$) which was prepared from cellulose acetate fiber was investigated in a comparative manner. From the results, it was found that en Vix exhibited better printing properties than regular viscose rayon. It showed stable final color yields, irrespective of the amount of thickener, hence reproducibility of printing of en Vix is expected to be excellent. In addition, urea requirements were less for the printings on en Vix than for the corresponding printing on viscose rayon. Therefore, en Vix is also expected to reduce the amount of the urea which causes environmental problems in dyehouse effluent.