• Title/Summary/Keyword: Rayleigh flow

Search Result 210, Processing Time 0.03 seconds

Application of Holographic Interferometry and 2-D PIV for HSC Convective Flow Diagnostics (Hele-Shaw Cell 내부의 열유동 해석을 위한 홀로그래픽 간섭계와 2차원 PIV의 적용)

  • Kim, Seok;Lee, Sang-Joon
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.682-687
    • /
    • 2003
  • The variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasisteady changes of temperature field, two different measurement methods of holographic interferometry; double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves can be eliminated effectively using digital image processing technique and the reconstruction images are clear, but transient flow structure cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

  • PDF

Analysis for Particle Motion of Vertical Rayleigh flow (수직 Rayleigh 유동내의 입자 거동 해석)

  • Ko, Seok-Bo;Jun, Yong-Du;Lee, Kum-Bae
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.755-760
    • /
    • 2006
  • The exhaust gas with solid particle goes through the riser in both particle circulating type and circulating fluidized bed type heat exchanger to recover the heat. During heat transfer, gas velocity in vertical riser decreases as viscosity of exhaust gas decreases. In this case, when the particle size is fixed, sometimes the exhaust gas happens to have lower velocity which prohibit them to go out of the riser. In this paper the particle motion in vertical Rayleigh flow was studied. The behavior of heat transfer was investigated by means of velocity and temperature distribution. The result from numerical analysis was validated by the experimental results. Fortran code was used to analyze the particle motion in vertical Rayleigh flow.

  • PDF

Multiplicity of Flows in a Rayleigh-Benard Problem with Non-Uniform Wall Temperatures (불균일 벽면 온도를 갖는 Rayleigh-Benard 문제에서의 유동의 다수성)

  • Yoo, Joo-Sik;Kim, Yong-Jin
    • 대한공업교육학회지
    • /
    • v.30 no.2
    • /
    • pp.123-129
    • /
    • 2005
  • A Rayleigh-Benard problem with non-uniform wall temperatures of the form, $T_L=T_1+{\delta}{\Delta}T{\sin}kx$ and $T_U=T_2-{\delta}{\Delta}{\sin (kx)$, is numerically investigated. In the conduction-dominated regime with small a Rayleigh number, a two-tier structure appears with two counter-rotating rolls stacked on the top of each other. The flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The multicellular flows at high Rayleigh numbers consist of approximetely square-shape cells. Four multiple flows and dual flows classified by the number of cells are found at k=0.5 and k=1, respectively.

An Anomalous Bifurcation in Natural Convection between Two Horizontal Plates with Periodic Temperatures (주기적인 온도를 갖는 두 수평 평판 사이에서의 자연 대류에서의 이례적인 분기 현상)

  • Yoo Joo-Sik;Kim Yong-Jin
    • Journal of computational fluids engineering
    • /
    • v.9 no.4
    • /
    • pp.1-6
    • /
    • 2004
  • This study investigates the transition of flows in a natural convection problem with periodic wall temperatures of the form, T/sub L/=T₁+δ Tsinκχ and T/sub L/=T₂+δ Tsinκχ .The fluid considered is air with P/sub γ/=0.7. In the conduction-dominated regime with a small Rayleigh number, two large cells are formed over one wave length, for all wave numbers. When k≤1.8, the flow becomes unstable with increase of the Rayleigh number, and multicellular convection occurs above a critical Rayleigh number. The flow patterns are classified by the number of eddies over one wave length, and several kinds of transition phenomena, such as 2→3→4, 4→3→2, and 2→4 eddy flow, occur with increase( or decrease) of the Rayleigh number. Dual solutions are found above a critical Rayleigh number, and an anomalous bifurcation is observed.

Thermal instability during the melting process in an isothermally heated horizontal cylinder (등온가열 수평원관내 융해과정동안의 열적 불안정성)

  • Jeong, Jae-Dong;Yu, Ho-Seon;Lee, Jun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.6
    • /
    • pp.2046-2056
    • /
    • 1996
  • The constrained melting inside an isothermally heated horizontal cylinder has been repeatedly investigated in many studies only for the moderate Rayleigh numbers. This study extends the range of Rayleigh numbers to systematically investigate the transition during melting processes, especially focusing on the complex multi-cellular flow pattern and thermal instability. The enthalpy-porosity formulation, with appropriate source terms to account for the phase change, is employed. For low Rayleigh numbers, initially developed single-cell base flow keeps the flow stable. For moderate Rayleigh numbers, even small disturbances in balance between thermal buoyance force and viscous force result in branched flow structure. For high Rayleight numbers, Benard type convection is found to develop within a narrow gap between thee wall and the unmelted solid. The marginal Rayleigh number and the corresponding wave number are in excellent agreement with those from linear stability theory.

Numerical analysis of Poiseuille-Rayleigh-Bénard convection in supercritical carbon dioxide

  • Wang, Zhipeng;Xu, Hong;Chen, Chong;Hong, Gang;Song, Zhenguo;Zhang, Yaoli
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3540-3550
    • /
    • 2022
  • The supercritical carbon dioxide (S-CO2) Brayton cycle is an important energy conversion technology for the fourth generation of nuclear energy. Since the printed circuit heat exchanger (PCHE) used in the S-CO2 Brayton cycle has narrow channels, Rayleigh-Bénard (RB) convection is likely to exist in the tiny channels. However, there are very few studies on RB convection in supercritical fluids. Current research on RB convection mainly focuses on conventional fluids such as water and air that meet the Boussinesq assumption. It is necessary to study non-Boussinesq fluids. PRB convection refers to RB convection that is affected by horizontal incoming flow. In this paper, the computational fluid dynamics simulation method is used to study the PRB convection phenomenon of non-Boussinesq fluid-supercritical carbon dioxide. The result shows that the inlet Reynolds number (Re) of the horizontal incoming flow significantly affects the PRB convection. When the inlet Re remains unchanged, with the increase of Rayleigh number (Ra), the steady-state convective pattern of the fluid layer is shown in order: horizontal flow, local traveling wave, traveling wave convection. If Ra remains unchanged, as the inlet Re increases, three convection patterns of traveling wave convection, local traveling wave, and horizontal flow will appear in sequence. To characterize the relationship between traveling wave convection and horizontal incoming flow, this paper proposes the relationship between critical Reynolds number and relative Rayleigh number (r).

Diagnosis of HSC Convective Flow Using a Digital Holographic Interferometry and PIV System (디지털 홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Cell 내부 열유동 해석)

  • Kim, Seok;Lee, Sang-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.493-499
    • /
    • 2004
  • Variations of temperature and velocity fields in a Hele-Shaw convection cell (HSC) were investigated using a holographic interferometry and 2-D PIV system with varying Rayleigh number. To measure quasi-steady variation of temperature field, two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed. In the double-exposure method, unwanted waves were eliminated effectively using a digital image processing technique. The reconstructed images are clear, but transient flow cannot be reconstructed clearly. On the other hand, transient convective flow can be reconstructed well using the real-time method. However, the fringe patterns reconstructed by the real-time method contain more noises, compared with the double-exposure method. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow structure at high Rayleigh numbers. The periodic flow pattern at high Rayleigh numbers obtained by the real-time holographic interferometer method is in a good agreement with the PIV results.

Measurement of Thermal Flow in a Hele-Shaw Convection Cell Using Holographic Interferometry and PIV Technique (홀로그래픽 간섭계와 PIV를 이용한 Hele-Shaw Convection Cell 내부 열유동 해석)

  • Kim Seok;Lee Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.35-38
    • /
    • 2002
  • Variations of temperature and velocity fields in a Hele-Shaw Convection Cell (HSC) were measured using a holographic interferometry and PIV technique with varying Rayleigh number. Experimental results show a steady flow pattern at low Rayleigh numbers and a time-dependent periodic flow at high Rayleigh numbers. Two different measurement methods of holographic interferometry, double-exposure method and real-time method, were employed to measure the temperature field variations of HSC convective flow. In the double-exposure method, unwanted waves can be eliminated and reconstruction images are clear, but transient flow structure cannot be observed clearly. On the other hand, transient flow can be observed and reconstructed well using the real-time method. PIV results show that flow inside the HSC is periodic and the oscillating state is well matched with the temperature field results. The holographic interferometry and PIV techniques employed in this study are useful for analyzing the unsteady convective thermal fluid flows.

  • PDF

Three-Dimensional Numerical Study on Mixed Convective Vortex Flow in Rectangular Channels at High Prandtl Number (사각채널 내 고 Pr 수의 혼합대류 볼텍스 유동에 관한 3차원 수치적 연구)

  • Piao, Ri-Long;Bae, Dae-Seok
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.29-30
    • /
    • 2005
  • A three-dimensional numerical calculation has been performed to investigate mixed convective vortex flow in rectangular channels(width/height=4) with the upper part cooled and the lower part heated uniformly. In this study, the Prandtl number was 909, the Reynolds number was varied from 0 to $9.6{\times}10^{-2}$ and the Rayleigh number from $10^3$ to $5{\times}10^4$. The governing equations were discretized using the finite volume method. From a parametric study, velocity and temperature distributions were obtained and discussed. It is found that vortex flow of mixed convection in rectangular channels can be classified into three flow patterns which depend on Reynolds and Rayleigh numbers, and the regular vortex structure disappears around Rayleigh number $5{\times}10^4$.

  • PDF

Mixed Convection in Channels of an Electronic Cabinet (전자장비 채널에서의 혼합대류에 관한 연구)

  • 이재헌;남평우;박상동;조성환
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.771-779
    • /
    • 1989
  • Numerical analysis by SIMPLE algorithm has been performed to predict the characteristics of flow and heat transfer in channels between the printed circuit boards of an electronic cabinet. It is assumed that the electronic parts release uniform heat flux per unit axial length to the cooling air. The air flow between channels is assumed fully developed laminar, incompressible, and mixed convective. In this study, the electronic parts are mounted on both sides of the prinked circuit boards by two kinds of configuration such as the zig-zag and the symmetric one. The Rayleigh numbers ranging from 0 to 10$^{6}$ are considered to predict the characteristics of the main flow and the secondary flow occurred by natural convection, the temperature distribution in channel, the heat transfer rate from heated electronic parts and the increase of friction factor by natural convection. As the results of numerical calculation, several conclusions are drawn as follows. The influence of natural convection on the flow characteristics appears strong when the Rayleigh number is above 10$^{4}$. The main axial flow rate decreases by a half or more at the Rayleigh number of 10$^{6}$ . Although the friction factor increases as Rayleigh number increases, the increasing rate of heat transfer is higher than that of the friction factor. The cooling efficiency of the zig-zig-configuration is superior to that of the symmetric configuration at same Rayleigh number.