• 제목/요약/키워드: Rayleigh Damping

검색결과 62건 처리시간 0.061초

Vibration Analysis of Railway Tracks Forced by Distributed Moving Loads

  • Lee, Sinyeob;Kim, Dongkyu;Ahn, Sangkeun;Park, Junhong
    • International Journal of Railway
    • /
    • 제6권4호
    • /
    • pp.155-159
    • /
    • 2013
  • The purpose of this study was to develop a theoretical model to analyze the vibration of finite railways forced by distributed moving loads. The vibration characteristics of compliantly supported beam utilizing compressional damping model were investigated through the Rayleigh-Ritz method. The distributed moving load was analyzed as the cross correlation function on railways. This allowed the use of statistical characteristics for simulation of the moving train wheels on the rail. The results showed there is a critical velocity inducing resonant vibration of the rail. The mass spring resonance from the rail fastening systems exhibited significant influence on the resulting vibration response. In particular, the effect of the viscoelastic core damping was investigated as an efficient method for minimizing rail vibration. The decrease of the averaged vibration and rolling noise generation by the damping core was maximized at the mass-stiffness-mass resonance frequency.

Dynamic characteristics of hybrid tower of cable-stayed bridges

  • Abdel Raheem, Shehata E.
    • Steel and Composite Structures
    • /
    • 제17권6호
    • /
    • pp.803-824
    • /
    • 2014
  • The dynamic characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as can mass and stiffness. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping, such as steel/concrete mixed structure - supporting soil coupled system. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of hybrid tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping; the second approach employs a detailed numerical step-by step integration procedure in which the damping matrices of the upper and the lower substructures are modeled with the Rayleigh damping formulation.

동하중재하시 지반진동에 관한 실험적 연구 (An Experimental Study of Ground Motion under the Dynamic Load)

  • 김문겸
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1997년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 1997
    • /
    • pp.126-131
    • /
    • 1997
  • Recently, the ground motion occurred by vehicles or trains has been recognized one of the major factors of damage of structures nearly the motion source. To isolate the environments from ground motions, it is necessary to understand the wave propagation in half spaces. Especially, Rayleigh wave is the primary concern because it transmits a major portion of the total source energy and decays the energy more slowly with response to distance than the other waves. In this study, the preliminary data(wave length and damping effect) to design the isolating system are obtained. For this, a field dynamic test is performed, using the exciter which can generate the 100kN vertical cyclic load in the range of 1-60 Hz is used. The fifteen accelerometers to measure the ground response are set up in 3 radial direction at intervals of 10 meters in each row. The wave lengths are calculated using the distance and the phase between the measuring points. The damping effects of the Rayleigh-wave are also observed from the experiments.

  • PDF

다물체 동역학을 이용한 송전선의 슬릿점프 시뮬레이션 (Sleet Jump Simulation of Power Transmission Line by Using Multi-Body Dynamics)

  • 김지욱;손정현
    • 한국산업융합학회 논문집
    • /
    • 제20권5호
    • /
    • pp.431-439
    • /
    • 2017
  • Since the power transmission line(PTL) passes through the high mountain and heavy snowfall region, it is necessary to keep the stability of the PTL. In this study, PTL is modeled as a mass-spring-damper system by using RecurDyn. The lumped mass model is verified by calculated from the simulation comparing the deflection analysis according to the sag and tension. In order to analyze the dynamic behavior of PTL, a damping coefficient for a multi-body model is derived by using the free vibration test and Rayleigh damping theory. Sleet jump simulation according to the region is performed. The maximum jump height, icing sag and amount of jump are confirmed. Also, the amount of jump and the reaction force at the supporting point according to the tension and load of ice are analyzed, respectively. As a result, it is noted that the amount of jump and reaction force are influenced more by the load of ice than by the tension of PTL.

Strength reduction factor spectra based on adaptive damping of SDOF systems

  • Feng Wang;Kexin Yao;Wanzhe Zhang
    • Structural Monitoring and Maintenance
    • /
    • 제11권3호
    • /
    • pp.219-234
    • /
    • 2024
  • The strength reduction factor spectrum is traditionally obtained from a single-degree-of-freedom (SDOF) system with a constant damping coefficient. However, according to the principle of Rayleigh damping, the damping coefficient matrix of a system changes with the stiffness matrix, and the damping coefficient of an equivalent SDOF system changes with the tangent stiffness coefficient. In view of that, this study proposes an equivalent SDOF system with an adaptive damping coefficient and derives a standardized reaction balance equation. By iteratively adjusting the strength reduction factor, the corresponding spectrum with an equivalent ductility factor is obtained. In addition, the ratio between the strength reduction factor that considers adaptive damping and the traditional strength reduction factor, denoted by η, is determined, and the η-μ-T relationship is obtained. Seismic records of Classes C, D, and E sites are selected as excitations. Moreover, a nonlinear response time-history analysis is performed to establish the relationship between the η and T values for the equivalent ductility factor μ. Further, by exploring the effects of the site class, ductility factor, second-order stiffness coefficient, and period T on the mean value of η, a simplified calculation equation of mean η is derived, and η is used as a modified value for the traditional strength reduction factor R spectrum.

SELECTION OF DAMPING MODEL IN VIBRATION OF FLEXIBLE BEAMS

  • Kim, Hyun-Woo;Yoo, Wan-Suk
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.578-583
    • /
    • 2007
  • Many papers have studied computer-aided simulations of elastic bodies undergoing large deflections and large deformations. But there have been few attempts to validate their numerical formulations used in these studies. The main aim of this paper is to validate the absolute nodal coordinate formulation (ANCF) by comparing the results to experimental measurements on beams. Physical experiments with a high-speed camera were carried out to capture the large displacement of the beam and to verify the results of computer simulations. To consider the damping forces, the Rayleigh's damping and quadratic damping are employed and compared to the experimental results, respectively. Numerical results obtained from computer simulations were compared with the results from the physical experiments according to the $1^{st}$ mode and the $2^{nd}$ mode of the beam, respectively.

  • PDF

구조물 손상탐지 및 감쇄평가를 위한 시간 영역에서의 SI 기법 (An SI Scheme for the Assessment of Structural Damage and Damping)

  • 이해성;강주성
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.430-433
    • /
    • 2003
  • This paper presents a system identification (SI) scheme in time domain using measured acceleration data. The error function is defined as the time integral of the least square errors between the measured acceleration and the calculated acceleration by a mathematical model. Damping parameters as well as stiffness properties of a structure are considered as system parameters. The structural damping is modeled by the Rayleigh damping in SI. The regularization technique is applied to alleviate the ill-posed characteristics of inverse problems. The validity of the proposed method is demonstrated by an experimental study on a shear building model.

  • PDF

콘크리트 댐 내진성능평가 시 감쇠비 적용 방안 고찰 (Study on the Application of Damping Ratio in the Seismic Performance Evaluation of Concrete Dams)

  • 오정근;정영석;권민호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제27권1호
    • /
    • pp.9-18
    • /
    • 2023
  • 이 논문의 목적은 콘크리트 댐의 내진성능평가 시 현행 설계기준과 평가요령에서 제시하는 감쇠비 값 크기에 대한 적용방안의 적정성을 검토하고 개선안을 제시하는 것이다. 연구결과 동적탄성해석 시 감쇠비의 크기는 지진하중의 크기가 유사하고 감쇠비에 대한 재현성이 검증된 유사댐의 사례를 참조할 필요가 있으며, 동적소성해석 시에는 지진하중의 크기와 상관없이 초기 탄성거동을 고려하여 감쇠비를 낮은값으로 적용하고 비선형 거동 시 이력감쇠가 추가되도록 고려할 필요가 있다. 또한 암반상에 위치한 콘크리트 댐체는 방사감쇠 효과가 미미하므로 방사감쇠를 반영하기 위해 콘크리트 댐체의 감쇠비를 증가시키는 것은 합리적이지 않다. 따라서 콘크리트 댐의 현실적인 내진성능평가를 위해 현행 댐 설계기준과 평가요령에 수록된 감쇠비 관련내용에 대해 개정이 필요하다.

희박 예혼합 덤프 연소기에서 OH 자발광을 이용한 열 방출에 관한 실험적 연구 (Experimental Study on Heat Release in a Lean Premixed Dump Combustor using OH Chemiluminescence Images)

  • 문건필;이종호;전충환;장영준
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1146-1151
    • /
    • 2004
  • Measurements of OH chemiluminescence in an atmospheric pressure, laboratory-scale dump combustor at equivalence ratios ranging from 0.63 to 0.89 were reported. The signal from the first electronically excited state of OH to ground state was detected through a band-pass filter with an ICCD. The objectives of this study are two: One is to see the effects of equivalence ratio on global heat release rate and local Rayleigh index distribution. To get the local Rayleigh index distribution, the line-of-sight images were inverted by tomographic method, such as Abel de-convolution. Another aim is to investigate the validity of using OH chemiluminescence acquired with an ICCD as a qualitative measure of local heat release. For constant inlet velocity and temperature, the overall intensities of OH emission acquired at different equivalence ratio showed periodic and higher value at high equivalence ratio. OH intensity averaged over one period of pressure increased exponentially with equivalence ratio. Local Rayleigh index distribution clearly showed the region of amplifying or damping the combustion instability as equivalence ratio increased. It could provide an information/insights on active control such as secondary fuel injection. Finally, local heat release rate derived from reconstructed OH images were presented for typical locations.

  • PDF

Parametric resonance of a spinning graphene-based composite shaft considering the gyroscopic effect

  • Neda Asadi;Hadi Arvin;Yaghoub Tadi Beni;Krzysztof Kamil Zur
    • Steel and Composite Structures
    • /
    • 제51권4호
    • /
    • pp.457-471
    • /
    • 2024
  • In this research, for the first time the instability boundaries for a spinning shaft reinforced with graphene nanoplatelets undergone the principle parametric resonance are determined and examined taking into account the gyroscopic effect. In this respect, the extracted equations of motion in our previous research (Ref. Asadi et al. (2023)) are implemented and efficiently upgraded. In the upgraded discretized equations the effect of the Rayleigh's damping and the varying spinning speed is included that leads to a different dynamical discretized governing equations. The previous research was about the free vibration analysis of spinning graphene-based shafts examined by an eigen-value problem analysis; while, in the current research an advanced mechanical analysis is addressed in details for the first time that is the dynamics instability of the aforementioned shaft subjected to the principal parametric resonance. The spinning speed of the shaft is considered to be varied harmonically as a function of time. Rayleigh's damping effect is applied to the governing equations in order to regard the energy loss of the system. Resorting to Bolotin's route, Floquet theory and β-Newmark method, the instability region and its accompanied boundaries are defined. Accordingly, the effects of the graphene nanoplatelet on the instability region are elucidated.