• Title/Summary/Keyword: Ray tracing model

Search Result 163, Processing Time 0.026 seconds

Rendering Method of Light Environment Based on Modeling of Physical Characteristic (물리적 특성 모델링에 기반한 라이팅 환경의 랜더링 기법)

  • Lee, Myong-Young;Lee, Cheol-Hee;Ha, Yeong-Ho
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.43 no.6 s.312
    • /
    • pp.46-56
    • /
    • 2006
  • In this paper, we propose an improved reproduction algorithm for a realistic image of the real scene based on the optical characteristics of the light sources and the materials at the lighting environment. This paper is continuation of the previous study to improve the modeling method of the light sources and the materials and apply this to the real rear lamp of automobile. The backward ray tracing method is first used to trace the light ray from a light source, and also considers the physical characteristics of object surfaces and geometric properties of light radiation to estimate accurately the light energy incoming toward to human eyes. For experiments and verification of the proposed method, the simulation results are compared with the measured light stimuli. Accordingly, the simulation results show that the proposed algorithm can estimate light energy well and reproduce the visually similar image with a scene incident on a sight of viewer.

Wide FOV Panorama Image Acquisition Method (광각 파노라마 영상획득 방법)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.2117-2122
    • /
    • 2015
  • Wide FOV(Field-of-View) is required to contain much more visual information in a single image. The wide FOV imaging system has many industrial applications such as surveillance, security, tele-conference, and mobile robots. In order to obtain a wide FOV panorama image, an imaging system with hyperbolic cylinder mirror is proposed in this paper. Because the horizontal FOV is more important than the vertical FOV in general, a hyperbolic cylinder mirror is designed in this paper, that has a hyperbolic curve in the horizontal surface and is the same as a planar mirror in the vertical axis. Imaging model of the proposed imaging system is presented by ray tracing method and the hyperbolic cylinder mirror is implemented. The imaging performance of wide FOV is verified by experiments in this paper. This imaging system is cost-effective and is possible to acquire a wide panorama image having 210 degree horizontal FOV in real-time without an extra image processing.

Development of Advanced Rendering Library for CAD/CAM Moduler (CAD/CAM 모델러용 고급 렌더링 라이브러리의 개발)

  • Choe, Hun-Gyu;Lee, Tae-Hyeon;Han, Hun
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.5 no.4
    • /
    • pp.385-394
    • /
    • 1999
  • 제품을 설계하는 디자이너나 엔지니어는 많은 시간과 노력을 들이지 않고서 그들이 설계한 3차원 제품 모델에 대한 사실적인 이미지를 원한다. 디자인 프로세스의 초기인 개념 설계에서부터 설계검증, 그리고 가공 과정에서 사실적인 이미지가 매우 유용하므로, 대부분의 주요 CAD 제작사는 그들의 CAD 소프트웨어에 고급 렌더링 기능을 추가하고 있다. 상용의 CAD/CAM 모델러에서는 NURB 곡면을 기초로 모델링을 수행하므로, NURB 곡면을 렌더링할 수 있는 패키지가 필요하다. VIF(Visual InterFace) 렌더링 라이브러리는 A-buffer 방식과 Ray tracing 방식의 두 가지 고급 렌더링 모드를 제공한다. 다각형은 물론 NURB 곡면을 입력으로 받아 사용자가 설정한 표면의 각종 계수, 원하는 view와 설정된 광원에 따라 이미지를 만들고 다양한 형태로 출력시킬 수 있는 다양한 기능을 제공한다. 본 논문에서는 VIF 렌더링 라이브러리에 대한 구조와 기능별로 분류된 함수에 대하여 설명하며, 실제로 CAD/CAM 시스템과 통합되어 구상설계에서부터 3차원 설계 모델링에 이르기까지의 제조공정에서 설계검증 툴로써 어떻게 활용되고 있는가에 대하여 기술한다.Abstract Engineers and industrial designers want to produce a realistic-looking images of a 3D model without spending a lot of time and money. Photo-realistic images are so useful from the conceptual design, through its verification, to the machining, that most major CAD venders offer built-in as well as add-on photo-realistic rendering capability to their core CAD software. Since 3D model is consists of a set of NURB surfaces in commercial CAD packages, we need a renderer which handles NURB surface as well as other primitives.A new rendering library called VIF (Visual InterFace) provides two photo-realistic rendering modes: A-buffer and Ray tracing. As an input data it takes NURB surfaces as well as polygonal data and produces images in accordance with the surface parameters, view and lights set by user and outputs image with different formats. This paper describes the overall architecture of VIF and its library functions classified by their functionalities, and discusses how VIF is used as a graphical verification tool in manufacturing processes from the conceptual design to 3D modeling.

Prediction of Backscattering Strength and Volume (동물플랑크톤에 의한 후방산란강도 및 체적복반사음의 예측)

  • 나정열
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1992.06a
    • /
    • pp.127-130
    • /
    • 1992
  • 한국 근해에서 능동소나 (active sonar) 사용시 사용되는 environmental parameters 가운데 하나인 volume reverberation(REv)을 산출하기 위하여 플랑크톤에 의한 후방산란 강도(backscattering strength)에 대한 연구를 하였다. 이를 위하여 수산진흥원 자료(80-89년)중 부유생물조사표에서 후방산란 강도가 다른 종에 비하여 큰 copepoda의 개체수를 평균한 후, 수심별 개체수를 계산하여 수심별, 주파수별(10, 50kHz), 계절별(2월, 8월) 후방산란 강도와 multipath eigenray model을 이용하여 REv를 산출하였다. 예로 사용한 동남해역(zone:S3), 서해중부해역(zone:W3)에서 주파수별 REv는 일반적인 형태인 포기에는 고주파가 높고, 1.5초 이후에는 저주파가 높게 나타났다. 그러나 여름이 겨울보다 플랑크톤 개체수가 많아 후방산란 강도가 크지만(2-5dB), REv는 겨울이 더 크게 나타났다. 이러한 이유는 SVP profile에 의한 pressure 계산결과, 여름에는 ray가 down-ward이고 겨울에는 duct를 형성하여 ray가 거의 direct로 진행하므로 transmission loss가 여름이 크기 때문이다. 또한 ray tracing결과 여름철에는 ray crossing이 많아 겨울에 비하여 fluctuation이 심하게 나타나는 현상을 보이고 있다. 두 지역 이외에도 한국근해의 정확한 REv을 예측하기 위해서는 플랑크톤의 정확한 측정과, 이론적인 수치와 비교할 수 있는 실측치를 얻는 것이 필요하다고 볼 수 있다.

  • PDF

Fluid Flow and Heat Transfer Inside a Solar Chimney Power Plant

  • Gholamalizadeh, Ehsan;Chung, Jae Dong
    • Plant Journal
    • /
    • v.14 no.1
    • /
    • pp.42-46
    • /
    • 2018
  • The flow and heat transfer characteristics inside a solar chimney power plant system are analyzed in this article. 3-D model with the $k-{\varepsilon}$ turbulence closure was developed. In this model, to solve the radiative transfer equation the discrete ordinates radiation model was implemented, using a two-band radiation model. To simulate radiation effects from the sun's rays, the solar ray tracing algorithm was coupled to the calculation via a source term in the energy equation. Simulations were carried out for a system with the geometry parameters of the Manzanares power plant. Based on the numerical results, the velocity and temperature distributions were illustrated and the results were validated by comparing with experimental data of the Manzanares prototype power plant. Moreover, temperature profile of the ground surface of the system was illustrated.

  • PDF

MIMO Channel Modeling Using Concept of Path Morphology (Path Morphology 개념을 이용한 MIMO 채널 모델링)

  • Jeong, Won-Jeong;Yoo, Ji-Ho;Kim, Tae-Hong;Kim, Myung-Don;Chung, Hyun-Kyu;Bae, Seok-Hee;Pack, Jeong-Ki
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.179-187
    • /
    • 2010
  • The use of high frequency band, broad band and MIMO antenna is expected in the next generation mobile communication system. By the rapid increase of demand for wireless communications and the explosive increase of the mobile communication services, researches for optimization of next-generation mobile communication system are required. In the existing MIMO channel models, propagation-environments are commonly classified into urban, suburban, rural area, etc. However such approaches can have drawbacks in that many different morphologies may exist even in the urban area, for example. In this paper, we introduced path morphology concept, and proposed the method of morphology classification considering the building height, density, etc. Delay spread(DS), angular spread(AS) of AoD and AoA analyzed for each environment using the ray tracing technique. Based on the analysis, a MIMO channel model appropriate in domestic environment was suggested.

Simultaneous imaging and radiometric performance simulation for computer generated GOCI optical system with measured characteristics

  • Jeong, Soo-Min;Jeong, Yu-Kyeong;Ryu, Dong-Ok;Yoo, Jin-Hee;Kim, Seong-Hui;Cho, Seong-Ick;Ham, Sun-Jeong;Youn, Heong-Sik;Woo, Sun-Hee;Kim, Sug-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.27.3-28
    • /
    • 2008
  • In this study, we report a new Monte Carlo ray tracing technique for estimating GOCI (Geostationary Ocean Color Instrument) radiative transfer characteristics and imaging performance simultaneously. First, a full scale GOCI optical model was constructed with measured characteristics at the component level and placed in the geostationary orbit. An optical model of approximated GOCI target area centered at the Korean penninsular was then built using the USGS coastal line data and representative land and sea surface reflectivity data. The light rays launched from a simulated sun model travel to the Earth surface, where they are reflected and scattered. Some of the light rays that are headed to the GOCI model in the orbit were selected and traced, as they have entered into the GOCI aperture. As they pass through each GOCI optical part, the ray path and intensity are adjusted according to the measured characteristics for reflection, transmission, refractive index and surface scattering. The ray-traced imaging and radiative transfer performance indicators confirm that the computer generated GOCI optical system with measured characteristics can be used for in-orbit operation simulation following the designed measurement sequence. The computational technique and its implications as a operation support tool are discussed.

  • PDF

Heat Losses from the Receivers of a Multifaceted Parabolic Solar Energy Collecting System

  • Seo, Taebeom;Ryu, Siyoul;Kang, Yongheock
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.8
    • /
    • pp.1185-1195
    • /
    • 2003
  • Heat losses from the receivers of a dish-type solar energy collecting system at the Korea Institute of Energy Research (KIER) are numerically investigated. It is assumed that a number of flat square mirrors are arranged on the parabolic dish structure to serve as a reflector. Two different types of receivers, which have conical and dome shapes, are considered for the system, and several modes of heat losses from the receivers are thoroughly studied. Using the Stine and McDonald model convective heat loss from a receiver is estimated. The Net Radiation Method is used to calculate the radiation heat transfer rate by emission from the inside surface of the cavity receiver to the environment. The Monte-Carlo Method is used to predict the radiation heat transfer rate from the reflector to the receiver. Tracing the photons generated, the reflection loss from the receivers can be estimated. The radiative heat flux distribution produced by a multifaceted parabolic concentrator on the focal plane is estimated using the cone optics method. Also, the solar radiation spillage around the aperture is calculated. Based on the results of the analysis, the performances of two different receivers with multifaceted parabolic solar energy collectors are evaluated.

INTEGRATED OPTICAL MODEL FOR STRAY LIGHT SUPPRESSION AND END-TO-END PERFORMANCE SIMULATION FOR GOCI

  • Ham, Sun-Jeong;Lee, Jae-Min;Youn, Heong-Sik;Kang, Gm-Sil;Kim, Seong-Hui;Kim, Sug-Whan
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.274-277
    • /
    • 2006
  • KARI is currently developing a geostationary ocean color imager (GOCI) for COMS. We report the progress in integrated optical modeling and analysis for stray light suppression and the end-to-end instrument performance verification including in-orbit calibration. The Sun is modeled as the emitting light source and the selected area around Korean peninsular as the observation target that scatters the sun light towards GOCI in orbit. The optical ray tracing employing active geometric scaling was then used for precise characterization of the spatial and radiometric performance at the instrument focal plane. The analysis results show positive reduction in the simulated stray light level with the design improvement including baffles. It also indicates that the ray traced in-orbit radiometric performances are effective tools for the independent assessment of more traditional linear and quadratic equation based estimation of water leaving radiance. The concept of integrated GOCI optical model and the computational method are presented.

  • PDF