• 제목/요약/키워드: Ray traced visualization

검색결과 3건 처리시간 0.087초

Photorealistic Ray-traced Visualization of Manufacturing Tolerances of Freeform Vehicle Side Mirror

  • Ul Hasan, Syed Azkar;Lee, Hocheol;Lee, Gang;Lee, Sungkoo
    • Current Optics and Photonics
    • /
    • 제4권6호
    • /
    • pp.516-523
    • /
    • 2020
  • The normal low-cost manufacturing process for freeform vehicle side mirrors causes deviations from the design curvature. Here, an improved manufacturing process is proposed, combining photorealistic ray-traced visualization of each deviation and subsequent analysis of its deviated reflective scene compared to that of the original design. The proposed mechanism successfully highlights the overlap and mismatch regions of deviated reflected scenes with reference to the desired reflective scenes. We benchmarked the robustness of freeform mirror manufacturing by evaluating the 10, 20, and 30% root-mean-square (RMS) deviated curvature, and concluded that the acceptable deviation needs to be below RMS20% to avoid mismatched regions that could mislead the driver.

Photorealistic Ray-traced Visualization Approach for the Interactive Biomimetic Design of Insect Compound Eyes

  • Nguyen, Tung Lam;Trung, Hieu Tran Doan;Lee, Wooseok;Lee, Hocheol
    • Current Optics and Photonics
    • /
    • 제5권6호
    • /
    • pp.699-710
    • /
    • 2021
  • In this study, we propose a biomimetic optical structure design methodology for investigating micro-optical mechanisms associated with the compound eyes of insects. With these compound eyes, insects can respond fast while maintaining a wide field of view. Also, considerable research attention has been focused on the insect compound eyes to utilize these benefits. However, their nano micro-structures are complex and challenging to demonstrate in real applications. An effectively integrated design methodology is required considering the manufacturing difficulty. We show that photorealistic ray-traced visualization is an effective method for designing the biomimetic of a micro-compound eye of an insect. We analyze the image formation mechanism and create a three-dimensional computer-aided design model. Then, a ray-trace visualization is applied to observe the optical image formation. Finally, the segmented images are stitched together to generate an image with a wide-angle; the image is assessed for quality. The high structural similarity index (SSIM) value (approximately 0.84 to 0.89) of the stitched image proves that the proposed MATLAB-based image stitching algorithm performs effectively and comparably to the commercial software. The results may be employed for the understanding, researching, and design of advanced optical systems based on biological eyes and for other industrial applications.

Photorealistic Ray-traced Visualization Process of an Aspherical Fresnel Mirror with Low Distortion

  • Hien Nguyen;Hieu Tran Doan Trung;Van Truong Vu;Hocheol Lee
    • Current Optics and Photonics
    • /
    • 제8권5호
    • /
    • pp.493-501
    • /
    • 2024
  • This study proposes an effective visualization method for image distortion in high-resolution, machinable Fresnel mirrors, which offer significant advantages over traditional convex mirrors by being thinner and lighter. While commercial optical design programs are excellent at optimizing aberrations, they have some limitations in visualizing images from complex optical configurations. Therefore, NXTM CAD software is employed to achieve photorealistic ray-traced visualization with high-fidelity image rendering due to its flexible two-dimensional and three-dimensional modeling environments. In comparative simulations with various mirror profiles, we identified an aspherical Fresnel mirror with a conic constant of k = -3 that can reduce distortion to 1.79%, according to Zemax OpticStudio® calculations. Finally, the NXTM software successfully validated the distortion image of our machinable aspherical Fresnel mirror design. Subsequent practical experiments validated the consistency between the predicted distortion and the actual visualization results. We anticipate that this specialized visualization technique holds the potential to radically transform the interactive design of optical systems that incorporate aspherical Fresnel mirrors.