• Title/Summary/Keyword: Ray effects

Search Result 2,001, Processing Time 0.032 seconds

A New Ray Tracing Method of a Plastic Lens Connected with finite-Element Analysis (유한요소해석과 연계한 플라스틱 렌즈의 광선추적 기법)

  • Park K.;Lee S. K.;Jeon K. S.;Mo P. S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.100-107
    • /
    • 2005
  • The present work covers a new ray tracing scheme of an injection-molded plastic lens linked with finite element analysis fur injection molding processes. The traditional ray tracing schemes have been based on the assumption that optical property of the lens is homogeneous throughout the entire volume. However, this assumption is quite unrealistic for injection-molded plastic lenses since material properties vary at every point due to injection molding effects. In order to consider non-homogeneous property of a lens, a modified ray tracing method is proposed in connection with finite element analysis of injection molding. Through the analysis of the injection molding process, the distribution of refractive indices can be obtained. This information is then utilized in the proposed ray tracing scheme based on finite element meshes so as to take into account variation of the refractive indices. The effect of mold temperature is also investigated through finite element analysis, and the relevant optical quality is evaluated through the proposed ray tracing simulation.

Studies on the Acceleration of Germination in Carrot Seed (II) Effects of X-ray and Ultraviolet light in the Germination of Carrot Seed (당근종자 발아촉진에 관한 연구 (제2보) 당그종자 발아에 미치는 X-ray, Ultraviolet Light의 영향)

  • 권오용
    • Journal of Plant Biology
    • /
    • v.13 no.2
    • /
    • pp.15-20
    • /
    • 1970
  • The treatment of X-ray was manipulated with the large focus of X-ray which was produced the capacity of 90 kilovoltage and 30 milliamphere in the distance of 50 centimeter. The germination of each gruop irradiated with X-ray for 5, 6, and 7 seconds was more delayed in the growth of carrot seed than those of the control group. However the germination of each group irradiated with X-ray for 2, 3, and 4 seconds was rather accelerated than those of the control group. The irradiation of ultraviolet light was carried out in the distance of 20 centimeter by Toshiba germidicial lamp which appeared the wavelength of 2537A$^{\circ}$. The germination of each group irradiated with ultraviolet light for 9, 15, 20, and 40 minutes was more delayed than those of the control group, but the germination of carrot seed was accelerated by adequate dosage of ultraviolet light. Consuquently it was suggested for the author that the inhibited substance contained in carrot seed would be certain fatty substance, becasue the germination of carrot seed was more accelerated by the treatment of acetone than those of X-ray and ultraviolet light.

  • PDF

Measurement of Apron Shielding Rate for X-ray and Gamma-ray (X선 및 감마선에 대한 apron의 차폐율 측정)

  • Park, Myeong-Hwan;Kwon, Deok-Moon
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.245-250
    • /
    • 2007
  • This research measured the shielding rates of apron 0.25 and 0.5 mmPb for X-ray energy in diagnosis radiation system and gamma-ray energy of $^{99m}Tc$-MDP and $^{18}F$-FDG. X-ray energies were measured on effective energy of $26.2{\sim}45.6\;keV$ when additional filtering plate of 0, 2 mmAl is used within the range of tube voltage $40{\sim}120\;kVp$, and at this time, apron 0.5 mmPb has shown about 5.5% of increase in its shielding rate over 0.25 mmPb at the highest quality. Besides, the aprons of the two types have shown high shielding rate of over 90% for direct X-ray and spatial dose rate. And, in case 0.25 and 0.5 mmPb aprons were used at 140keV of $^{99m}Tc$-MDP, the shielding effects were between 30 and 53%, and at high energy of 511 keV, $^{18}F$-FDG, the shielding effects of apron, $1.3{\sim}3.6%$, were very small.

  • PDF

A Comparison between the Performance Degradation of 3T APS due to Radiation Exposure and the Expected Internal Damage via Monte-Carlo Simulation (방사선 노출에 따른 3T APS 성능 감소와 몬테카를로 시뮬레이션을 통한 픽셀 내부 결함의 비교분석)

  • Kim, Giyoon;Kim, Myungsoo;Lim, Kyungtaek;Lee, Eunjung;Kim, Chankyu;Park, Jonghwan;Cho, Gyuseong
    • Journal of Radiation Industry
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2015
  • The trend of x-ray image sensor has been evolved from an amorphous silicon sensor to a crystal silicon sensor. A crystal silicon X-ray sensor, meaning a X-ray CIS (CMOS image sensor), is consisted of three transistors (Trs), i.e., a Reset Transistor, a Source Follower and a Select Transistor, and a photodiode. They are highly sensitive to radiation exposure. As the frequency of exposure to radiation increases, the quality of the imaging device dramatically decreases. The most well known effects of a X-ray CIS due to the radiation damage are increments in the reset voltage and dark currents. In this study, a pixel array of a X-ray CIS was made of $20{\times}20pixels$ and this pixel array was exposed to a high radiation dose. The radiation source was Co-60 and the total radiation dose was increased from 1 to 9 kGy with a step of 1 kGy. We irradiated the small pixel array to get the increments data of the reset voltage and the dark currents. Also, we simulated the radiation effects of the pixel by MCNP (Monte Carlo N-Particle) simulation. From the comparison of actual data and simulation data, the most affected location could be determined and the cause of the increments of the reset voltage and dark current could be found.

A study on Algorithm Automatically Generating Ray Codes for Ray-tracing (파선코드 자동생성 알고리즘에 관한 연구)

  • Lee, Hee-Il;Cho, Chang-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.361-367
    • /
    • 2008
  • When constructing a synthetic seismogram in the earthquake study or in seismic data interpretation by using a ray-tracing technique, the most troublesome and error-prone task is to define a suite of ray codes for the corresponding rays to trace in advance. An infinite number of rays exist for any arbitrarily located source and receiver in a medium. Missing certain important rays or an inappropriate selection of ray codes in tracing rays may result in wrong interpretation of the earthquake record or seismogram. Automatic ray code generation could be able to eliminate those problems. In this study we have developed an efficient algorithm with which one can generate systematically all the ray codes for the source(s) and receiver(s) arbitrarily located in a model. The result of this work could be used not only in analysing multiples in seismic data processing and interpretation, but also in coda wave study, study on the amplification effects in a basin and phase identification of the waves multiply reflected/refracted in earthquake study.

Asymmetric cosmic ray modulation of Forbush decreases related to the propagation direction of ICMEs

  • Oh, Suyeon;Park, Wooyeon;Yi, Yu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.96.1-96.1
    • /
    • 2013
  • A Forbush decrease(FD) is a depression of cosmic ray intensity observed by ground-based neutron monitors(NMs). The cosmic ray intensity is thought to be modulated by the heliospheric magnetic structures including the interplanetary coronal mass ejection(ICME) surrounding the Earth. The different magnitude of the decreasing in intensity at each NM was explained only by the geomagnetic cutoff rigidity of NM station. However, sometimes NMs of the almost same rigidity in northern and southern hemispheres observe the asymmetric intensity depression magnitudes of FD events. Thus, in this study we intend to see the effects on cosmic ray intensity depression rate of FD event recorded at different NMs due to different ICME propagation direction as an additional parameter in the model explaining the cosmic ray modulation. Fortunately, since 2006 the coronagraphs of twin spacecraft of the STEREO mission allow us to infer the propagation direction of ICME associated with the FD event in 3-dimension with respect to the Earth. We confirm that the asymmetric cosmic ray decreasing modulations of FD events are determined by the propagation directions of the associated ICMEs.

  • PDF

Hyperoside Protects Cells against Gamma Ray Radiation-Induced Apoptosis in Hamster Lung Fibroblast

  • Piao, Mei Jing;Kim, Ki Cheon;Cho, Suk Ju;Chae, Sungwook;Kang, Sam Sik;Hyun, Jin Won
    • Natural Product Sciences
    • /
    • v.19 no.2
    • /
    • pp.127-136
    • /
    • 2013
  • Ionizing radiation, including that evoked by gamma (${\gamma}$)-rays, induces oxidative stress through the generation of reactive oxygen species, resulting in apoptosis, or programmed cell death. This study aimed to elucidate the radioprotective effects of hyperoside (quercetin-3-O-galactoside) against ${\gamma}$-ray radiation-induced apoptosis in Chinese hamster lung fibroblasts, V79-4 and demonstrated that the compound reduced levels of intracellular reactive oxygen species in ${\gamma}$-ray-irradiated cells. Hyperoside also protected irradiated cells against DNA damage (evidenced by pronounced DNA tails and elevated phospho-histone H2AX and 8-oxoguanine content) and membrane lipid peroxidation. Furthermore, hyperoside prevented the ${\gamma}$-ray-provoked reduction in cell viability via the inhibition of apoptosis through the increased levels of Bcl-2, the decreased levels of Bax and cytosolic cytochrome c, and the decrease of the active caspase 9 and caspase 3 expression. Taken together, these results suggest that hyperoside defend cells against ${\gamma}$-ray radiation-induced apoptosis by inhibiting oxidative stress.

BREEDING EXPERIMENT ON MUTATION INDUCTION BY IRRADIATION (2) Effects of X-ray and Thermal Neutron Irradiation on Dry Seeds of Chinese Cabbage and Radish.

  • Kim, Dawng Woo;Kim, Yang Choon;Cho, Mi Kyung
    • Journal of Plant Biology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 1962
  • 1) Germination rate was rather irregular than decreasing as increasing dose of radiation and there were no differences between Kyong-Sam and Chuong-Bang of Chinese cabbage. 2) In R1 generation, abnormal leaves from seedling of irradiated seeds were observed. These were more apparent in X-ray irradiation than in thermal neutron. 3) Seedling height was inhibited with increasing dose of X-ray and thermal neutrons. Growth inhibition was more remarkable in X-ray than in thermal neutron. Kyong-Sam demonstrated more sensitivity than Chyong-Bang in both X-ray and thermal neutron. 4) Seedling height produced from seeds subjected to thermal neutrons showed small variation around its mean value, while in X-irradiation there was a greater deviaton from the mean value. 5) Fertility was decreased as increasing with dose, while the frequency of abortive pollen was increased. There were variability of the fertility and frequency of abortive pollen among plants or branches of a plant. 6) The mutants were obtained more in thermal neutron irradiation than in X-ray. The types of mutations obtained in Chinese radish of R2 generation were abnormal leaf, densely glowing leaf, degeneration in growing point and dwarf. The maximum frequency of phenotypic mutations was abnormal leaf mutation.

  • PDF

Differential Modulation of Volatile Constituents in Artemisia princeps and Artemisia argyi Plants after Gamma Ray or Electron Beam Irradiation

  • Kim, Ji Hong;Cho, Eun Ju;Lee, Min Hee;Kim, Ji Eun;Chung, Byung Yeoup;Kim, Tae Hoon;Kim, Jin-Hong
    • Journal of Radiation Industry
    • /
    • v.6 no.1
    • /
    • pp.17-21
    • /
    • 2012
  • The effects of gamma ray or electron beam irradiation on herbaceous medicinal plants were investigated in terms of the composition of volatile constituents using the aerial parts or leaves of Artemisia princeps Pamp. cv. Ganghwayakssuk and Artemisia argyi cvs. Namhaeyakssuk and Hwanghaessuk. The composition of volatile constituents in leaves was clearly distinguishable among the three Artemisia cultivars. However, the relative proportions of the major volatile constituents such as 1,8-cineole, ${\alpha}$-pinene, camphene, santolina triene, and artemesia triene, were similarly changed in two or three cultivars by gamma ray or electron beam irradiation. In particular, the proportion of 1,8-cineole was increased up to 1.29- to 1.71-fold in the three cultivars after irradiation with gamma ray. These results suggest that gamma ray or electron beam irradiation can be applied to modulate the composition of volatile constituents in the leaves of Artemisia plants.

Monte Carlo simulations for gamma-ray spectroscopy using bismuth nanoparticle-containing plastic scintillators with spectral subtraction

  • Taeseob Lim ;Siwon Song ;Seunghyeon Kim ;Jae Hyung Park ;Jinhong Kim;Cheol Ho Pyeon;Bongsoo Lee
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3401-3408
    • /
    • 2023
  • In this study, we used the Monte Carlo N-Particle program to simulate the gamma-ray spectra obtained from plastic scintillators holes filled with bismuth nanoparticles. We confirmed that the incorporation of bismuth nanoparticles into a plastic scintillator enhances its performance for gamma-ray spectroscopy using the subtraction method. The subtracted energy spectra obtained from the bismuth-nanoparticle-incorporated and the original plastic scintillator exhibit a distinct energy peak that does not appear in the corresponding original spectra. We varied the diameter and depth of the bismuth-filled holes to determine the optimal hole design for gamma-ray spectroscopy using the subtraction method. We evaluated the energy resolutions of the energy peaks in the gamma-ray spectra to estimate the effects of the bismuth nanoparticles and determine their optimum volume in the plastic scintillator. In addition, we calculated the peak-to-total ratio of the energy spectrum to evaluate the energy measuring limit of the bismuth nanoparticle-containing plastic scintillator using the subtraction method.