• Title/Summary/Keyword: Ray Method

Search Result 5,500, Processing Time 0.037 seconds

I-V Measurements of large area $HgI_2$ X-ray detector produced by PIB method (PIB법을 이용한 대면적 $HgI_2$ 검출기의 I-V 특성평가)

  • Kim, Kyung-Jin;Park, Ji-Koon;Kang, Sang-Sik;Cha, Byung-Youl;Cho, Sung-Ho;Sin, Jeong-Uk;Mun, Chi-Ung;Nam, Sang-Hee;Kim, Jin-Yung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.254-255
    • /
    • 2005
  • In this paper, we investigated electrical characteristics of the X-ray detector of mercuric iodide (HgI2) film fabricated by PIB(Particle-in-Binder) Method on ITO substrates 17cm$\times$20cm in size with thicknesses ranging from approximately 200${\mu}m$ to 240${\mu}m$. In the present study, using I-V measurements, their electrical properties such as leakage current, X-ray sensitivity, and signal-to-noise ratio (SNR),were investigated. The results of our study can be useful in the future design and optimization of direct active-matrix flat-panel detectors (AMFPD) for various digital X-ray imaging modalities.

  • PDF

Authentication Technologies of X-ray Inspection Image for Container Terminal Automation

  • Kim, Jong-Nam;Hwang, Jin-Ho;Ryu, Tae-Kyung;Moon, Kwang-Seok;Jung, Gwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1684-1688
    • /
    • 2005
  • In this paper, authentication technologies for X-ray inspection images in container merchandises are introduced and a method of authentication for X-ray inspection images is proposed. Until now, X-ray images of container merchandises have been managed without any authentication of inspection results and environments, it means that there was no any action for protection of illegal copy and counterfeiting of X-ray images from inspection results. Here, authentication identifies that who did inspect container X-ray images and, whether the container X-ray images were counterfeited or not. Our proposed algorithm indicates to put important information about X-ray inspection results on an X-ray image without affecting quality of the original image. Therefore, this paper will be useful in determining an appropriate technology and system specification for authentication of X-ray inspection images. As a result of experiment, we find that the information can be embedded to X-ray image without large degradation of image quality. Our proposed algorithm has high detection ratio by Quality 20 of JPEG attack.

  • PDF

Fast Measurement of Eyebox and Field of View (FOV) of Virtual and Augmented Reality Devices Using the Ray Trajectories Extending from Positions on Virtual Image

  • Hong, Hyungki
    • Current Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.336-344
    • /
    • 2020
  • Exact optical characterization of virtual and augmented reality devices using conventional luminance measuring methods is a time-consuming process. A new measurement method is proposed to estimate in a relatively short time the boundary of ray trajectories emitting from a specific position on a virtual images. It is assumed that the virtual image can be modeled to be formed in front of one's eyes and seen through some optical aperture (field stop) that limits the field of view. Circular and rectangular shaped virtual images were investigated. From the estimated ray boundary, optical characteristics, such as the viewing direction and three dimensional range inside which a eye can observe the specified positions of the virtual image, were derived. The proposed method can provide useful data for avoiding the unnecessary measurements required for the previously reported method. Therefore, this method can be complementary to the previously reported method for reducing the whole measurement time of optical characteristics.

A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction

  • Yang, Li-qun;Liu, Yong-kuo;Peng, Min-jun;Li, Meng-kun;Chao, Nan
    • Nuclear Engineering and Technology
    • /
    • v.51 no.5
    • /
    • pp.1436-1443
    • /
    • 2019
  • A fast gamma-ray dose rate assessment method for complex geometries based on stylized model reconstruction and point-kernel method is proposed in this paper. The complex three-dimensional (3D) geometries are imported as a 3DS format file from 3dsMax software with material and radiometric attributes. Based on 3D stylized model reconstruction of solid mesh, the 3D-geometrical solids are automatically converted into stylized models. In point-kernel calculation, the stylized source models are divided into point kernels and the mean free paths (mfp) are calculated by the intersections between shield stylized models and tracing ray. Compared with MCNP, the proposed method can implement complex 3D geometries visually, and the dose rate calculation is accurate and fast.

Memory Efficient Parallel Ray Casting Algorithm for Unstructured Grid Volume Rendering on Multi-core CPUs (비정렬 격자 볼륨 렌더링을 위한 다중코어 CPU기반 메모리 효율적 광선 투사 병렬 알고리즘)

  • Kim, Duksu
    • Journal of KIISE
    • /
    • v.43 no.3
    • /
    • pp.304-313
    • /
    • 2016
  • We present a novel memory-efficient parallel ray casting algorithm for unstructured grid volume rendering on multi-core CPUs. Our method is based on the Bunyk ray casting algorithm. To solve the high memory overhead problem of the Bunyk algorithm, we allocate a fixed size local buffer for each thread and the local buffers contain information of recently visited faces. The stored information is used by other rays or replaced by other face's information. To improve the utilization of local buffers, we propose an image-plane based ray grouping algorithm that makes ray groups have high coherency. The ray groups are then distributed to computing threads and each thread processes the given groups independently. We also propose a novel hash function that uses the index of faces as keys for calculating the buffer index each face will use to store the information. To see the benefits of our method, we applied it to three unstructured grid datasets with different sizes and measured the performance. We found that our method requires just 6% of the memory space compared with the Bunyk algorithm for storing face information. Also it shows compatible performance with the Bunyk algorithm even though it uses less memory. In addition, our method achieves up to 22% higher performance for a large-scale unstructured grid dataset with less memory than Bunyk algorithm. These results show the robustness and efficiency of our method and it demonstrates that our method is suitable to volume rendering for a large-scale unstructured grid dataset.

A Preliminary Study on the Fire Safety Testing Method for Fire-resistance Paints Using an X-ray Analysis Method (X-선 분석법을 이용한 내화도료의 화재안전성 평가 방법에 관한 기초연구)

  • Shim, Ji-Hun;Cho, Nam-Wook;Kim, Kang-Woo
    • Fire Science and Engineering
    • /
    • v.28 no.5
    • /
    • pp.58-63
    • /
    • 2014
  • Fire-resistance paints are supposed to become intumescent and diminish heat transfer along the steel frames in case of a fire. If unsatisfactory fire-resistance paints which do not satisfy their standard specification are used, it may result in a severe disaster. Because satisfactory fire-resistance paints are hardly discriminated from the unsatisfactory ones by a simple visual inspection, more reliable and convenient onsite evaluation methods are necessary. Here we report the preliminary study result on the fire safety testing method for fire-resistance paints using an X-ray analysis method. It was found that the existence and quantity of effective constituents in fire-resistance paints can be detected by the X-ray analysis method. X-ray fluorescence (XRF) analyses showed that P and Cl elements are much more enriched in fire-resistance paints, compared to normal paints. X-ray diffraction (XRD) analyses showed that ammonium polyphosphate is present as the main crystalline material in fire-resistance paints, but absent in normal paints. The X-ray analysis method is expected to be used for the onsite inspection of fire-resistance paints with the upcoming availability of portable XRF and XRD instruments.

A Soft Shadow Technique for a Real-time Mobile Ray Tracing Hardware (실시간 모바일 레이트레이싱 하드웨어를 위한 소프트 쉐도우 생성 기법)

  • Kwon, Hyuck-Joo;Hong, Dukki;Park, Woo-Chan;Lee, Sanghoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.23 no.3
    • /
    • pp.55-64
    • /
    • 2017
  • In this paper, a novel soft shadow method is suggested to support realistic shadows in mobile ray tracing. In ray tracing, soft shadow is generally generated by sampling a shadow ray. As this sampling method increases the number of rays to be processed, it has undermined the performance. We designed the proposed soft shadow processing method and hardware architecture to overcome this problem through selective shadow generation and triangle address caching for minimizing the performance degradation caused by sampling. The proposed hardware architecture can be integrated into a mobile ray-tracing hardware and was evaluated in terms of its performance on the FPGA. Based on the results, the rendering performance about 4, 8, and 16 samples were improved, respectively, by 40%, 50%, and 56% on average compared to the previous method, and it was found that the real-time soft shadow processing is feasible with the proposed hardware architecture.

Bounding Box based Shadow Ray Culling Method for Real-Time Ray Tracer (실시간 광선추적기를 위한 바운딩 박스 기반의 그림자 검사 컬링 기법)

  • Kim, Sangduk;Kim, Jin-Woo;Park, Woo-Chan;Han, Tack-Don
    • Journal of Korea Game Society
    • /
    • v.13 no.3
    • /
    • pp.85-94
    • /
    • 2013
  • In this paper, we propose a scheme to reduce the number of shadow tests conducted during rendering of ray tracing. The shadow test is a very important process in ray tracing to generate photo-realistic images. In the rendering phase, the ray tracer determines whether to cull the shadow test based on information calculated from a shadow test conducted on the kd-tree in the preprocessing phase. In conventional rendering process, the proposed method can be used with little modification. The proposed method is suitable for a static scene, in which the geometry and light source does not change in the same manner as it does in the conventional method. The validity of the proposed scheme is verified and its performance is evaluated during cycle-accurate simulation. Through experiment results, we found that we could reduce up to 17% of the shadow test.

Speed Enhancement Technique for Ray Casting using 2D Resampling (2차원 리샘플링에 기반한 광선추적법의 속도 향상 기법)

  • Lee, Rae-Kyoung;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.27 no.8
    • /
    • pp.691-700
    • /
    • 2000
  • The standard volume ray-tracing, optimized with octree, needs to repeatedly traverse hierarchical structures for each ray that often leads to redundant computations. It also employs the expensive 3D interpolation for producing high quality images. In this paper, we present a new ray-casting method that efficiently computes shaded colors and opacities at resampling points by traversing octree only once. This method traverses volume data in object-order, finds resampling points on slices incrementally, and performs resampling based on 2D interpolation. While the early ray-termination, which is one of the most effective optimization techniques, is not easily combined with object-order methods, we solved this problem using a dynamic data structure in image space. Considering that our new method is easy to implement, and need little additional memory, it will be used as very effective volume method that fills the performance gap between ray-casting and shear-warping.

  • PDF