• Title/Summary/Keyword: Raw Water-Source Heat Pump

Search Result 9, Processing Time 0.021 seconds

Cooling and Heating Operation Characteristics of Raw-water Source Heat Pump and Air Source Heat Pump in Water Treatment Facility (정수장 내 원수열원 및 공기열원 히트펌프의 냉난방 운전 특성)

  • Oh, Sun-Hee;Yun, Rin;Cho, Yong
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.25 no.7
    • /
    • pp.386-391
    • /
    • 2013
  • The dynamic characteristics of both raw-water source and air source heat pump utilized in water treatment facilities were investigated by using TRNSYS simulator. The modeling of the raw water source heat pump was verified by the measured data at the Cheongju water treatment facility, and the modeling at the air source heat pump was verified by the data from the Siheung water treatment facility. The average heating and cooling COPs from the raw-water source heat pump were higher than those of the air source heat pump by 19% and 18%, respectively. The power consumptions of the air source heat pump for the cooling and the heating were higher than those of the raw water source heat pump by 28% and 26%, respectively.

Analysis on Cooling and Heating Performance of Water-to-Water Heat Pump System for Water Source Temperature (물-물 수온차 히트펌프 시스템의 원수온도에 따른 성능 특성 분석)

  • Park, Tae Jin;Cho, Yong;Park, Jin-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.169.2-169.2
    • /
    • 2010
  • The research assesses the performance of the water-to-water heat pump system installed in Cheongju water treatment plant for cooling and heating ventilation. In summer season monthly averaged COP is ranged from 3.85 to 4.56 according to the water source temperature, and the performance is increased as the raw water temperature is dropped. While, heating performance is increased for the high temperature water source, and the monthly averaged COP is changed from 2.92 to 3.82. The correlation of the water source temperature and the heat pump performance shows a linear tendency by the simple regression of average data. In heating, the COP of heat pump system linearly rises according to the water source temperature. In comparison, the COP in cooling linearly reduces as the raw water temperature is raised. The goodness of fit at the simple regression shows the coefficient of determination 82% in cooling, 46% in heating. The electric cost of water-to-water heat pump is reduced by 40% compared to that of air source heat pump.

  • PDF

Performance Characteristics of Water-to-Air Heat Pump under Partial Load Heating Operation (물-공기 히트펌프 시스템의 부분부하 난방운전 특성)

  • Cho, Yong;Lee, Nam Young;Kim, Yong Yeol;Kim, Dea Geun;Jung, Eung Tai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.170.1-170.1
    • /
    • 2010
  • Performance of water-to-air heat pump using raw water has been analyzed under part load heating operation in March, 2010. The water source heat pump of 30 RT was installed for 24 hours cooling and heating ventilation, and the gravity inflow water from Daechung dam is used as the heat source. The daily averaged water and air temperatures are $5.7^{\circ}C$ and $9.9^{\circ}C$ respectively, and the heat pump is operated under part load condition for 7.5 hours in 24 hours. The daily averaged heat pump COP calculated with heat transferred from the brine water is 2.49 and the monthly averaged COP is 2.25 in March. Based on the database of the California Energy Commission, the monthly averaged COPs of air source heat pumps installed in U.S.A. are 1.97 in March and 2.03 in April. Therefore it is confirmed again that the performance of the heat pump using raw water is better than that of air source heat pumps.

  • PDF

Winter Season Performance Characteristics of Raw Water-Source Heat Pump System with a Thermal Storage Tank (원수열원 히트펌프 축열시스템의 동절기 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.202-202
    • /
    • 2011
  • Performance of the raw water-source heat pump system with a thermal storage tank has been analyzed in winter season. The raw water is transferred through the multi-regional water supply system from Han river. Raw water is large temperature difference resource compared with groundwater. Although the raw water temperature drops to $0.6^{\circ}C$ due to the heavy snowfall and the severe cold in late January and early February, 2010, the system has been normally operated without any trouble this winter. The unit COP and system COP considered all pump power consumption were estimated based on the second-by-second data of the all sensors. The monthly averaged unit COP and system COP are 3.37 and 2.76 respectively with $1.4^{\circ}C$ of raw water in January, 3.55 and 2.89 with $1.6^{\circ}C$ raw water in February, 3.82 and 3.15 with $5.4^{\circ}C$ raw water in March. The performance of the system are increased with raw water temperature, and the COPs are higher than the water-to-air heat pump system using relatively high temperature raw water from Daecheong reservoir because the water-to-water system was operated on the full load condition and was stopped when the thermal storage tank was full of the high temperature water.

  • PDF

Evaluation of Water Temperature Difference Energy of the Raw Water from Paldang Water Intake Station (수도권 팔당취수장 원수 이용 온도차에너지 부존량 조사)

  • Cho, Yong;Park, Jin-Hoon;Kim, Youngjoon;Park, Tae Jin
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.170.2-170.2
    • /
    • 2010
  • The amount of the heating and cooling energy of water source heat pump using the raw water from the Paldang water intake station is investigated in the study. The Han river water is conveyed in the large-size shallowly buried pipe. Averaged water temperature at the position, 27 km from the Paldang water intake station, is increased by $1.11^{\circ}C$ due to the geothermal energy transfer under the ground, therefore the raw water has more thermal energy than the river water. To estimate of the thermal energy for the raw water, it is assumed that the water source heat pump is used for the heating and cooling ventilation. When $5.0^{\circ}C$ temperature difference energy of the raw water is used in the heat pump system all the year except for the January and February in which $3.0^{\circ}C$ temperature difference energy is used. It is predicted that total 5,766.3 Tcal could be used in the metropolitan area a year, which is about 3.0% of the river water unutilized energy resources.

  • PDF

Studies on Raw-Water Source Heat Pump Equipped with Thermal Storage Tank in Water Treatment Facility (정수장 내 축열조 설치 원수열원 히트펌프의 성능분석)

  • Oh, Sun Hee;Yun, Rin;Cho, Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.467-472
    • /
    • 2013
  • A raw-water source heat pump equipped with a thermal storage tank was dynamically simulated by TRNSYS, and the results were verified by using the data from a heat pump installed in the Seongnam water treatment facility. The average coefficient of performance (COP) of the raw-water source heat pump based on simulation was 4.97 and 3.17 in the cooling and heating season, respectively. When the volume of the thermal storage tank was changed from 5 to $20m^3$, the highest COP was found at a size of $10m^3$. Considering the regional locations of raw-water source heat pumps at Seoul, Incheon, Gangneung, and Gwangju, Seoul showed the lowest electric power consumption in the cooling season and the highest in the heating season. When a comparison of the performance between the present system and that of a water-air heat pump was conducted, the present system showed lower electric power consumption by 25% than that of a water-air heat pump.

Performance Analysis of Water-to-Air Heat Pump System under Water Temperature and Load Ratio (열원 및 부하조건에 따른 물-공기 히트펌프 시스템의 성능분석)

  • Cho, Yong;Lee, Dong Keun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.194.2-194.2
    • /
    • 2011
  • Heating and cooling performance has been analyzed for the water-source heat pump system using raw water from Daechung reservoir. During heating operation from March to May, water temperature is not good condition for a heat source due to the higher atmospheric temperature. Avearged heating load ratio is only 14.3%, and the averaged unit COP and system COP are estimated to be 2.46 and 2.15 respectively. The COP is affected considerably by the water temperature, and the unit COP is increased from 2.16 at $5^{\circ}C$ to 2.95 at $11^{\circ}C$. Cooling performance is analyzed with the measured data from June to August. During cooling operation, raw water has lower temperature by 4. $5^{\circ}C{\sim}4.7^{\circ}C$ than the atmosphere. The load ratio is 39.2%, and the averaged unit COP and system COP are estimated to be 7.25 and 6.13 respectively. The heating COP is affected by the load ratio rather than water temperature. The COP is increased for 20%~40% load ratio, while is decreased for 40%~60% load ratio. It is estimated that the compressor operation combination for 3 (two constant speed and one inverter) compressors is changed for the load ratio.

  • PDF

An Applicability Analysis of River Water Source Heat Pump System using EnergyPlus Simulation (에너지플러스 시뮬레이션을 통한 하천수 열원 히트펌프 시스템의 적용 가능성 분석)

  • Sohn, Byonghu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.18 no.2
    • /
    • pp.10-21
    • /
    • 2022
  • A water source heat pump (WSHP) system is regarded as an energy-efficiency heating and cooling supply system for buildings due to its high energy efficiency and low greenhouse gas emissions. Recently, water sources such as river water, lake water, and raw water are attracting attention as heat sources for a heat pump system in Korea. This paper analyzed the applicability of a river water source heat pump system (RSHP). The river water temperature level was compared with the outdoor air and ground temperature levels to present applicability. In addition, the cooling and heating performance were compared through a simulation approach for the RSHP and a ground source heat pump (GSHP) applied to a large-scale office building. To compare the temperature level, the actual data were applied to the river water and the outdoor air, while the simulation results were applied to the ground circulation water. The results showed that the change in river water temperature throughout the year was similar to the change in outdoor air temperature. However, unlike the outdoor air temperature, the difference between the hourly and daily average river water temperatures was not large. The temperature level of river water was lower during the heating season and somewhat higher during the cooling season than that of the ground circulation water. Finally, the performance of the RSHP system was 13.4% lower than that of the GSHP system on an annual-based.

An Analysis of the Patents for Heat Pumps (열펌프의 정량적 특허기술 분석에 관한 연구)

  • Choi Jong Min;Kim Yongchan;Cheon Deokwoo;Shin Yun-Hee;Lee Sang Hyuk;Kwak Jae Su
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.9
    • /
    • pp.808-815
    • /
    • 2005
  • A technical analysis was conducted to predict the development trends for heat pump system. This study was based on submitted patents from 1983 to 2002 in Korea, USA, and Japan. The total number of raw data from the registered database was 19,261 and the obtained data to be analyzed through the filtering process was 5,143. Japan's technical development for the heat pump system was more dominant than the other countries. Approximately $54\%$ of the total patents related with the heat pump system was registered by Japan. The number of patents for the heat pump system registered by Korea was very low in 1980's, but it increased rapidly in 1990's. As a result, the number of patents applied by Korea was $21\%$ of all patents. When the patent was categorized into compression, absorption/ad-sorption, and chemical type, the technology of compression type made up over $80\%$ in each country. Approximately $93\%$ of the patents surveyed in this study was developed for air or water source heat pumps because of easy applications compared with other heat sources. The $89\%$ of all patents was applied by companies when applicants were divided into three groups of company, individual, and the others (national institute, university, and so on).