• Title/Summary/Keyword: Raw Starch-Digesting Enzyme

Search Result 20, Processing Time 0.02 seconds

A New Raw-Starch-Digesting ${\alpha}$-Amylase: Production Under Solid-State Fermentation on Crude Millet and Biochemical Characterization

  • Maktouf, Sameh;Kamoun, Amel;Moulis, Claire;Remaud-Simeon, Magali;Ghribi, Dhouha;Chaabouni, Semia Ellouz
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.489-498
    • /
    • 2013
  • A new Bacillus strain degrading starch, named Bacillus sp. UEB-S, was isolated from a southern Tunisian area. Amylase production using solid-state fermentation on millet, an inexpensive and available agro-resource, was investigated. Response surface methodology was applied to establish the relationship between enzyme production and four variables: inoculum size, moisture-to-millet ratio, temperature, and fermentation duration. The maximum enzyme activity recovered was 680 U/g of dry substrate when using $1.38{\times}10^9$ CFU/g as inoculation level, 5.6:1 (ml/g) as moisture ratio (86%), for 4 days of cultivation at $37^{\circ}C$, which was in perfect agreement with the predicted model value. Amylase was purified by Q-Sepharose anion-exchange and Sephacryl S-200 gel filtration chromatography with a 14-fold increase in specific activity. Its molecular mass was estimated at 130 kDa. The enzyme showed maximal activity at pH 5 and $70^{\circ}C$, and efficiently hydrolyzed starch to yield glucose and maltose as end products. The enzyme proved its efficiency for digesting raw cereal below gelatinization temperature and, hence, its potentiality to be used in industrial processes.

Degradation of Raw Starch Granules by α-Amylase Purified from Culture of Aspergillus awamori KT-11

  • Matsubara, Takayoshi;Ammar, Youssef Ben;Anindyawati, Trisanti;Yamamoto, Satoru;Ito, Kazuo;Iizuka, Masaru;Minamiura, Noshi
    • BMB Reports
    • /
    • v.37 no.4
    • /
    • pp.422-428
    • /
    • 2004
  • Raw-starch-digesting $\alpha$-amylase (Amyl III) was purified to an electrophoretically pure state from the extract of a koji culture of Aspergillus awamori KT-11 using wheat bran in the medium. The purified Amyl III digested not only soluble starch but also raw corn starch. The major products from the raw starch using Amyl III were maltotriose and maltose, although a small amount of glucose was produced. Amyl III acted on all raw starch granules that it has been tested on. However, it was considered that the action mode of the Amyl III on starch granules was different from that of glucoamylase judging from the observation of granules under a scanning electron microscope before and after enzyme reaction, and also from the reaction products. Glucoamylase (GA I) was also isolated and it was purified to an electrophoretically pure state from the extract. It was found that the electron micrographic features of the granules after treatment with the enzymes were quite different. A synergistic effect of Amyl III and GA I was observed for the digestion of raw starch granules.

Raw Starch-digesting Amylase is Comprised of two Distinct Domains of Catalytic and Substrate-Adsorbable Domain: Role of the C- Terminal Region in Raw-Starch-Binding

  • Kim, Cheorl-Ho
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2001.06a
    • /
    • pp.40-45
    • /
    • 2001
  • Raw starch-digesting amylase (BF-2A, M.W. 93, 000 Da) from Bacillus circulans F-2 was converted to two components during digestion with subtilisin. Two components were separated and designated as BF-2A' (63, 000 Da) and BF-2B (30, 000 Da), respectively. BF-2A' exhibited the same hydrolysis curve for soluble starch as the original amylase (BF-2A). Moreover, the catalytic activities of original and modified enzymes were indistinguishable in $K_{m}$, Vmax for, and in their specific activity for soluble starch hydrolysis. However, its adsorbability and digestibility on raw starch was greatly decreased. Furthermore, the enzymatic action pattern on soluble starch was greatly different from that of the BF-2A. A smaller peptide (BF-2B) showed adsorb ability onto raw starch. By these results, it is suggested that the larger peptide (BF-2A') has a region responsible for the expression of the enzyme activity to hydrolyze soluble substrate, and the smaller peptide (BF-2B) plays a role on raw starch adsorption. A similar phenomenon is observed during limited proteinase K, thermolysin, and endopeptidase Glu-C proteolysis of the enzyme. Fragments resulting from proteolysis were characterized by immunoblotting with anti-RSDA. The proteolytic patterns resulting from proteinase K and subtilisin were the same, producing 63- and 30-kDa fragments. Similar patterns were obtained with endopeptidase Glu-C or thermolysin. All proteolytic digests contained a common, major 63-kDa fragment. Inactivation of RSDA activity results from splitting off the C-terminal domain. Hence, it seems probable that the protease sensitive locus is in a hinge region susceptible to cleavage. Extracellular enzymes immunoreactive toward anti-RSDA were detected through whole bacterial cultivation. Proteins of sizes 93-, 75-, 63-, 55-, 38-, and 31-kDa were immunologically identical to RSDA. Of these, the 75-kDa and 63-kDa proteins correspond to the major products of proteolysis with Glu-C and thermolysin. These results postulated that enzyme heterogeneity of the raw starch-hydrolysis system might arise from the endogeneous proteolytic activity of the bacterium. Truncated forms of rsda, in which the gene sequence encoding the conserved domain had been deleted, directed the synthesis of a functional amylase that did not bind to raw starch. This indicates that the conserved region of RSDA constitutes a raw starch-binding domain, which is distinct from the active centre. The possible role of this substrate-binding region is discussed.d.

  • PDF

Studies on the Development and the Characteristics of the Powerful Raw Starch Digesting Enzyme (강력한 생전분 분해효소의 개발과 특성)

  • ;;Hajime Taniguchi
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.3
    • /
    • pp.251-259
    • /
    • 1990
  • Asp. usumii IAM 2185 was selected as a strain producing the powerful raw starch digesting glucoamylase. The optimum initial pH, the optimum temperature and the optimum cultural time for the enzyme production on wheat bran medium were pH 6-8,25-$30^{\circ}C$ and 72 hrs, respectively. The addition of ammonium nitrate and albumin on wheat bran medium, respectively, increase slightly the enzyme production. The enzyme was purified by ammonium sulfate fractionation, CM-cellulose and DEAE-cellulose column chromatography. The specific activity of the purified enzyme was 34.3 U/mg protein and the yield of enzyme activity was 10.3%. The purified enzyme showed a single band on polyacrylamide disc gel electrophoresis and its molecular weight was estimated to be 67,000 by SDS polyacrylamide disc gel electrophoresis. The isoelectric point for the purified enzyme was pR 3.7. The optimum temperature and optimum pH were $60^{\circ}C$and pH 3.0 and the purified enzyme was stable in the pH range of 1.0-11.0. The purified enzyme was stable below $50^{\circ}C$ and its thermostability was greatly increased by the addition of $Ca^{2+}$. The purified enzyme showed a high hydrolysis rate on various raw starches such as corn, rice, yam, arrow root, sweet potato and glutinous rice.

  • PDF

Production and Characterization of Crystalline Cellulose-Degrading Cellulase Components from a Thermophilic and Moderately Alkalophilic Bacterium

  • Kim, Dong-Soo;Kim, Cheorl-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.1
    • /
    • pp.7-13
    • /
    • 1992
  • A moderately thermophilic, alkalophlic and powerful crystalline cellulose-digesting bacterium, Bacillus K-12, was isolated from filter paper wastes and found to be similar to Bacillus circulans or Bacillus pumilis, except for its ability to grow at a moderately high pH and temperature. The isolate grew at a pH ranging from 6 to 10 and at a temperature ranging from 35 to $65^{\circ}C$ and produced a large amount of cellulase components containing avicelase, xylanase, CMCase, and FPase when grown in avicel medium for 5 to 7 days at $50^{\circ}C$. The crude enzyme preparation from the culture broth hydrolyzed xylan, raw starch, pullulan and ${\beta}-1,3$ glucan such as laminarin. Furthermore, the enzyme hydrolyzed crystalline cellulose to cellobiose and glucose and had a broad pH activity curve (pH 6~9). The enzyme was stable up to $70^{\circ}C$.

  • PDF

$\beta$-Amylase System Capable of Hydrolyzing Raw Starch Granules from Bacillus polymyxa No. 26 and Bacterial Identification

  • SOHN, CHEON-BAE;MYUNG-HEE KIM;JUNG-SURL, BAE;CHEORL-HO KIM
    • Journal of Microbiology and Biotechnology
    • /
    • v.2 no.3
    • /
    • pp.183-188
    • /
    • 1992
  • A soil bacterium which produces raw starch-digesting $\beta$-amylase in culture medium, has been screened from soils. One strain, isolated and identified as Bacillus polymyxa No. 26, was selected as a $\beta$-amylase producing bacterium. Morphological and biological characteristics of the strain were found to be similar to those of a strain belonging to B. polymyxa. The electron microscopic observations of the bacterial vegetative cells and sporulated cells were extensively done to know the corelation between the enzyme synthesis and sporulation. When the bacterium was cultured on the appropriate media (3% dextrin, 0.3% beef extract, 0.5% polypeptone, 1% yeast extract and 0.3% NaCl at pH 7.0 for 4 days) raw starch-digestible $\beta$-amylase was produced extracellularly. This strain produced 130 units of $\beta$-amylase per ml in a culture medium containing 3% dextrin at $30^\circ{C}$. This value is compared to those of other $\beta$-amylase-producing strains. The optimum pH and temperature for crude enzymes were pH 6.5 to 7.0 and $50^\circ{C}$, respectively. The enzymes were stable between pH 5.5 and 9.0 for 30 min at $45^\circ{C}$.

  • PDF

Studies on the screening and properties of Raw Starch Saccharifying Microorganism(II) - Purification and characterization of raw starch-digesting enzyme from Aspergillus sp. SN-871 - (생전분(生澱粉) 자화성(資化性) 미생물(微生物)의 분리(分離)와 성질(性質)에 관(關)한 연구(硏究)(II) - Aspergillus sp. SN-871이 생산하는 생전분 분해효소의 정제 및 특성 -)

  • Suh, Myung-Ja;Nho, Kyoung-Hee
    • The Korean Journal of Mycology
    • /
    • v.15 no.3
    • /
    • pp.175-182
    • /
    • 1987
  • A raw starch saccharifying enzyme from Aspergillus sp. SN-871 was purified by ammonium sulfate precipitation, DEAE-cellulose column chromatography, CM-Sephadex C-50 column chromatography and Sephadex G-75 gel filtration. The specific activity of purified enzyme was 18 fold and the yeild was 13.40%. The molecular weight of the purified enzyme was estimated as approximately 40,000 dalton by the method of Andrews gel filtration. The optimum pH and temperature for this enzyme were found to be 4 and $40^{\circ}C$, respectively and the stable range of pH was 2 to 5. The enzyme was themostable at below $60^{\circ}C$ and inactivated at $70^{\circ}C$. It showed a tendency to increase the enzyme activity under the presence of 0.01 M $BaCl_2$, but under 0.01 M$Pb(NO_3)_2$, $AgSO_4$, and $K_3Fe(CN)_6$ and citric acid etc. inhibited it completely. The substrate specifity of enzyme showed a tendency to increase the enzyme activity under addition of dextrin and glycogen, but under saccharose inhibited it. COD removal rate of Aspergillus sp. SN-871 was approximately 67 to 68%.

  • PDF

Changes in the Components of Acetic Acid Fermentation of Brown Rice Using Raw Starch Digesting Enzyme (생전분 분해효소를 이용한 현미의 초산발효조건에 따른 성분변화)

  • 신진숙;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.381-387
    • /
    • 2003
  • This study was performed to establish the fermentation method of non-steamed brown rice vinegar using starch saccharifing enzyme. During vinegar fermentation, initial pH had increased in the higher concentration of alcohol and acetic acid. Final pH was gradually changed to pH 2.90~3.44 from 3.44~4.06. The higher total acidity of brown rice vinegar resulted from the higher alcohol concentration. The total acidity was slightly dropped after gradually increasing from the starting of fermentation. Initial pH was decreased from 3.67 to 3.16. The total acidity was gradually increased from the first day of fermentation with 1.02, it was 1.54 on the second day after fermentation and there was a tendency to decreased after the highest values with 6.53 fermentation for 12 days. In organic acid composition, oxalic, malic, acetic, citric, and succinic acid were detected. The total free amino acid was decreased to 1,121 mg%. The major amino acids were ${\gamma}$ -aminobutyric acid, $\alpha$-aminoadipic acid and alanine, and ${\gamma}$-aminobutyric acid was the highest (539 mg%). The mineral contents such as P and K was high in sample and followed by Mg, Na, Ca.

Monitoring of Alcohol Fermentation Condition of Brown Rice Using Raw Starch Digesting Enzyme (생전분 분해효소를 이용한 현미 알콜발효조건의 모니터링)

  • 신진숙;이오석;김경은;정용진
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.3
    • /
    • pp.375-380
    • /
    • 2003
  • The study was carried out to set up alcohol fermentation condition for uncooked brown rice. Response surface methodology (RSM) was applied to optimize and monitor of the alcohol fermentation condition with uncooked brown rice. The primary variables were conducted the reaction surface regression analysis for the particle size of brown rice (20 40 60 mesh) the enzyme content (0.1,0.3,0.5%) and the agitating rate (0,100,200 rpm). Their optimization was 35~42 mesh for the size of particle and 0.32~0.43% for enzyme content by SAS (Statistical Analysis System). The coefficient of determination ($R^2$) in ingredients was admitted at the significant level of 5~10% in all ingredients except for a reducing sugar. Predicted values at optimum alcohol fermentation condition agreed with experimental values. During the fermentation, pH was decreased from 6.25 to 4.34, and total acidity was increased from 0.15 to 0.2. The amino acidity was decreased from 1.88 to 0.92, reducing sugar and total sugar contents were decreased 213 mg% and 1,077 mg%, respectively. Alcohol content was increased to 10% after 48 hr fermentation.

Monitoring of Alcohol Fermentation Condition with Brown Rice Using Raw Starch-Digesting Enzyme (생전분 분해효소를 이용한 현미 알콜발효조건의 모니터링)

  • Lee, Oh-Seuk;Jeong, Yong-Jin;Ha, Young-Duck;Kim, Kyungeun;Shin, Jin-Suk;Kwon, Hun
    • Food Science and Preservation
    • /
    • v.8 no.4
    • /
    • pp.412-418
    • /
    • 2001
  • This study was carried out to set up alcohol fermentation condition for uncooked brown rice. Response surface methodology(RSM) was applied to optimize and monitor of the alcohol fermentation condition with uncooked brown rice. The optimal yeast strain for fermentation of uncooked brown rice was S. cerevisiae GRJ. The polynomial equation for alcohol contents, brix pH and total acditiy showed 0.8828, 0.8409, 0.9431 and 0.9280 of R$^2$, respectively. Optimum range of uncooked alcohol fermentation for maximum alcohol contents were 0.34%(w/w) of enzyme concentration and 350%(w/w) of added water content, respectively. Predicted values at optimum alcohol fermentation condition agreed with experimental values.

  • PDF