• Title/Summary/Keyword: Ratios

Search Result 13,640, Processing Time 0.045 seconds

Evaluation of Physical Properties of Nanoemulsion Ampoule as Customized Cosmetic Bases and Evaluation of Satisfaction According to Skin Type (맞춤형화장품 베이스로서 나노에멀젼 앰플의 물성 평가 및 피부타입에 따른 만족도 평가)

  • Se-Yeon, Kim;Hyung Guen, An;Ja Young, Kim;Kyung-Sup, Yoon
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.4
    • /
    • pp.343-355
    • /
    • 2022
  • Customized cosmetics are continuously mentioned as cosmetics in response to changes in the social environment and trends that emphasize individuality. Therefore, in this study, four types of nanoemulsion ampoules corresponding to skin types were prepared by different ratios of nanoemulsion formulation and ampoule formulation, and the applicability as a customized cosmetic base was checked. Particle size, polydispersity index, zeta potential, and viscosity according to time for 90 d were measured for four nanoemulsion ampoules with different volatile residues, and turbiscan was measured as a method for evaluating the stability of a colloidal dispersion system. Finally, human usability satisfaction was evaluated. As a result, it was confirmed that four kinds of nanoemulsion ampoules had a higher amount of volatile residue in the dry skin test product than in the oily skin test product. The pH was in the range of 6.41 to 6.88, and the particle size was in the range of 170 to 174 nm, and the change after 90 d was within 1.2% of the maximum, and there was no specificity in particle size stability. It was confirmed that the polydispersity index was almost constant, and showed a particle size distribution close to monodispersity by showing a change within a value smaller than 0.21 in all test products. The zeta potential was initially -63 mV or more for all four types of test products, and although it showed a slight decrease with time, there was little change to the extent of a maximum decrease of 2.5%. Viscosity was initially in the range of 4,100 to 5,100 cps and showed a decreasing trend with time, showing a maximum decrease of 37.7%. In the turbiscan measurement, the turbiscan stability index, a measure of stability, was all below 1.0, indicating dispersion stability. In the usability satisfaction evaluation (6 points) of 4 nanoemulsion ampoules corresponding to skin type, oily skin product (5.42 ± 0.67 points) > neutral oily skin product (5.36 ± 0.67 points) > neutral dry skin product (5.15 ± 0.69 point) > dry skin product (4.75 ± 0.75 points) in the order of evaluation. Four types of nanoemulsion ampoules are physically stable and have confirmed their applicability as a customized cosmetic base according to skin type, and are expected to expand in various ways.

Zeolitization of the Dacitic Tuff in the Miocene Janggi Basin, SE Korea (장기분지 데사이트질 응회암의 불석화작용)

  • Kim, Jinju;Jeong, Jong Ok;Shinn, Young-Jae;Sohn, Young Kwan
    • Economic and Environmental Geology
    • /
    • v.55 no.1
    • /
    • pp.63-76
    • /
    • 2022
  • Dacitic tuffs, 97 to 118 m thick, were recovered from the lower part of the subsurface Seongdongri Formation, Janggi Basin, which was drilled to assess the potential for underground storage of carbon dioxide. The tuffs are divided into four depositional units(Unit 1 to 4) based on internal structures and particle componentry. Unit 1 and Units 3/4 are ignimbrites that accumulated in subaerial and subaqueous settings, respectively, whereas Unit 2 is braided-stream deposits that accumulated during a volcanic quiescence, and no dacitic tuff is observed. A series of analysis shows that mordenite and clinoptilolite mainly fill the vesicles of glass shards, suggesting their formation by replacement and dissolution of volcanic glass and precipitation from interstitial water during burial and diagenesis. Glass-replaced clinoptilolite has higher Si/Al ratios and Na contents than the vesicle-filling clinoptilolite in Units 3. However, the composition of clinoptilolite becomes identical in Unit 4, irrespective of the occurrence and location. This suggests that the Si/Al ratio and pH in the interstitial water increased with time because of the replacement and leaching of volcanic glass, and that the composition of interstitial water was different between the eastern and western parts of the basin during the formation of the clinoptilolite in Units 1 and 3. It is also inferred that the formation of the two zeolite minerals was sequential according to the depositional units, i.e., the clinoptilolite formed after the growth of mordenite. To summarize, during a volcanic quiescence after the deposition of Unit 1, pH was higher in the western part of the basin because of eastward tilting of the basin floor, and the zeolite ceased to grow because of the closure of the pore space as a result of the growth of smectite. On the other hand, clinoptilolite could grow in the eastern part of the basin in an open system affected by groundwater, where braided stream was developed. Afterwards, Units 3 and 4 were submerged under water because of the basin subsidence, and the alkali content of the interstitial water increased gradually, eventually becoming identical in the eastern and western parts of the basin. This study thus shows that volcanic deposits of similar composition can have variable distribution of zeolite mineral depending on the drainage and depositional environment of basins.

Physicochemical Characteristics of Corn Silk (옥수수 수염의 이화학적 특성과 변이)

  • Kim, Sun-Lim;Park, Cheol-Ho;Kim, E-Hun;Hur, Han-Sun;Son, Young-Koo
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.6
    • /
    • pp.392-399
    • /
    • 2000
  • This study was carried out to investigate the physicochemical characteristics of corn silks. Pollination of corn silks was finished within three days after silking, and elongation of open pollinated corn silks was stopped, but unpollinated silks elongated until eight days after silking. Moisture contents of corn silks were about 92-94% at silking stage, but continuously decreased. these were about 70-75% at 30 days after silking. Chlorophyll b was higher than chlorophyll a in corn silks, and chlorophyll a/b ratios of four hybrids were high in this order : silage > sweet > super sweet > waxy corn. Free sugars in corn silks were mainly fructose, glucose and maltose. Their composition rate was 55% of glucose, 42% of fructose and 4% of maltose. Water soluble solid (Brix %) contents of unpollinated corn silks were ranged from 13.7 to 16.8 Brix % and pollinated corn silks were from 12.6 to 13.7 Brix %. Phytic, oxalic, malic. shikimic, glutaric and acetic acid were detected on corn silks. Phytic, oxalic and glutaric acid were considered as a major organic acids in corn silks. Amino acids in corn silks were high in this order : waxy > silage > sweet >sweet corn. Serine, glycine and thereoine were contained more than 10%, and five amino acids such as aspartic, glutaric, arginine, alanine and proline were ranged about 5 to 8%. Methionine and cystine, amino acids containing sulfur were contained only small quantity as about 2.1% and 1.3%, respectively. Acetaldehyde, ethanol, acetone, DMS, isobutylaldehyde, cis-3-hexanol, 3-hexe-1-ol, acetate, trans-2-hexanol and pentanol were detected as the volatile components in corn silks, but acetaldehyde and DMS were major volitiles in silage corn silks, and acetaldehyde, ethanol and DMS were major volitiles in waxy corn silks. The length of corn silks was a positively correlated with organic acids (r=${0.556}^*$), and a negatively correlated with amino acids (r=${-0.514}^*$), respectively. Free sugars were positively correlated with all characteristics tested and significantly correlated with organic acid (r=TEX>${0.703}^{**}$), and flavonoids (r=TEX>${0.544}^*$). Chlorophyll was significantly correlated with flavonoid contents (r=TEX>${0.523}^*$). For this reason chlorophyll was evaluated as an indirect selection character for the high flavonoid containing varieties.

  • PDF

Distribution and Origin of the Mid-depth Cold Water Pools Observed in the Jeju Strait in the Summer of 2019 (2019년 여름철 제주해협에서 관측된 중층 저온수의 분포와 기원)

  • DOHYEOP YOO;JONG-KYU KIM;BYOUNG-JU CHOI
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.28 no.1
    • /
    • pp.19-40
    • /
    • 2023
  • To investigate the role of water masses in the Jeju Strait in summer on the shallow coastal region and the characteristics of water properties in the strait, temperature and salinity were observed across the Jeju Strait in June, July, and August 2019. The cold water pool, whose temperature is lower than 15℃, was observed in the mid-depths of the central Jeju Strait and on the northern bottom slope of the strait. The cold water pools have the lowest temperature in the strait. To identify water masses comprising the cold water pool in the Jeju Strait, mixing ratios of water masses were calculated. The mid-depth cold water pool of the Jeju Strait consists of 54% of the Kuroshio Subsurface Water (KSSW) and 33% of the Yellow Sea Bottom Cold Water (YSBCW). Although the cold water pool is dominantly affected by the KSSW, the YSBCW plays a major role to make the cold water pool maintain the lowest temperature in the Jeju Strait. To find origin of the cold water pool, temperature and salinity data from the Yellow Sea, East China Sea, and Korea Strait in the summer of 2019 were analyzed. The cold water pool was generated along the thermohaline frontal zone between the KSSW and YSBCW in the East China Sea where intrusion and mixing of water masses are active below the seasonal thermocline. The cold water in the thermohaline frontal zone had similar mixing ratio to the cold water pool in the Jeju Strait and it advected toward the Korea Strait and shallow coastal region off the south coast of Korea. Intrusion of the mid-depth cold water pool made temperature inversion in the Jeju Strait and affected sea surface temperature variations at the coastal region off the south coast of Korea.

Developmental and Reproductive Characteristics of Mythimna loreyi (Noctuidae) Reared on Artificial Diets (인공사료로 사육한 뒷흰가는줄무늬밤나방(Mythimna loreyi ) (밤나방과)의 발육과 생식 특성)

  • Eun Young, Kim;I Hyeon, Kim;Jin Kyo, Jung
    • Korean journal of applied entomology
    • /
    • v.61 no.3
    • /
    • pp.423-434
    • /
    • 2022
  • The two previously developed artificial diets (N4 and N6) used for rearing Spodoptera frugiperda (Noctuidae) larvae, were selected as highly-fit ones for rearing Mythimna loreyi larvae. Almost all biological characteristics were not significantly different between the colonies reared on the two diets at 25℃ and 15:9 h (light:dark) photoperiod. The developmental periods were 4.9-5.2 days for eggs, and 22.3-23.2 days for larvae. The pupal period and weight were different between the sexes in each diet colony. The pupal periods in females and males showed 12.6-12.8 days and 14.1-14.5 days, respectively. The pupal weights were ca. 345 mg for females and ca. 380 mg for males. The pupation and emergence rates were ca. 91-94%, and ca. 91-95%, respectively, without significant differences between the two colonies. The pre-oviposition and oviposition periods were 3.4 days and 4.7-4.8 days, respectively. The adult longevity was 8.2 days in females and 10.3-12.4 days in males. Total offsprings produced were found to be 724-847 larvae on an average with ca. 1,400 maximum larvae. In the life table analysis, the intrinsic rates of increases (0.1181 for N4 and 0.1253 for N6) were not significantly different between the two colonies. Individual differences in the larval instar number 5 and 6 were found within a diet colony. The ratios of 5-instar larvae were ca. 22% in N4 colony and ca. 7% in N6 colony. The larval period of 6-instar larvae was longer than that of 5-instar larvae. Width of head capsule in larvae varied from ca. 309 ㎛ for 1st instar to ca. 3,065 ㎛ for 6th instar. Body lengths measured from ca. 2.0 mm for 1st instar to ca. 29.1 mm for 6th instar. Larvae of M. loreyi and M. separata were found at the same time in a maize field during June and July, 2020.

Curcumin-induced Cell Death of Human Lung Cancer Cells (Curcumin에 의해 유도되는 인간 폐암 세포주의 세포사멸)

  • Hwasin Lee;Bobae Park;Sun-Nyoung Yu;Ho-Yeon Jeon;Bu Kyung Kim;Ae-Li Kim;Dong Hyun Sohn;Ye-Rin Kim;Sang-Yull Lee;Dong-Seob Kim;Soon-Cheol Ahn
    • Journal of Life Science
    • /
    • v.33 no.9
    • /
    • pp.713-723
    • /
    • 2023
  • Lung cancer is a type of cancer that has the highest mortality rate. It is mainly classified into small-cell lung cancer (SCLC) and non-small-cell lung cancer (NSCLC). Chemotherapy is used to treat lung cancer, but long-term treatment causes side effects and drug resistances. Curcumin is a bright yellow polyphenol extracted from the root of turmeric. It has biological activities, such as anti-oxidant, anti-cancer, and anti-inflammatory effects. In this study, we observed differential cell death in human lung cancer cells. Based on the results, curcumin at 10, 30, and 50 μM exhibited a dose-dependent inhibition on the cell survival of several lung cancer cells, with minor differential phenotypes. In addition, apoptosis, autophagy, and reactive oxygen species (ROS) regeneration were observed through flow cytometry. Curcumin dose-dependently increased these phenotypes in A549 (NSCLC) and DMS53 (SCLC), which were restored by corresponding inhibitors. Western blotting was performed to measure the level of expression of apoptosis- and autophagy-related proteins. The results indicate that Bax, PARP, pro-caspase-3, and Bcl-2 were dose-dependently regulated by curcumin, with seemingly higher Bax/Bcl-2 ratios in DMS53. In addition, autophagic proteins, p-AKT, p62, and LC3B, were dose-dependently regulated by curcumin. ROS inhibition by diphenyleneiodonium reduced the induction of apoptosis and autophagy generated by curcumin. Taken together, it is suggested that curcumin induces apoptosis and autophagy via ROS generation, leading to cell death, with minor differences between human lung cancer cells.

Evaluation of Efficient Pb Removal from Aqueous Solutions using Biochar Beads (바이오차 비드를 이용한 수용액에서 Pb의 효율적인 처리효율 평가)

  • Yu-Jin Park;Jae-Hoon Lee;Jun-Suk Rho;Ah-Young Choi;Sin-Sil Kim;Seul-Rin Lee;Jong-Hwan Park;Dong-Cheol Seo
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.1
    • /
    • pp.35-43
    • /
    • 2023
  • The fine particulate structure of biochar limits its use as a heavy metal adsorbent, and makes separation of the biochar from the solution technically challenging, thereby reducing recovery of the heavy metals. To address this issue, this study prepared biochar beads under various mixing conditions and investigated their efficiency in removing Pb from aqueous solutions using adsorption models. The biochar beads were produced by mixing alginate and biochar at different ratios: alginate bead (AB), 1% biochar + bead (1-BB), 2.5% biochar + bead (2.5-BB), and 5% biochar + bead (5-BB). The results revealed that the Freundlich isothermal adsorption pattern of the biochar beads to Pb was of the L-type. The highest Langmuir isothermal adsorption capacity (28.736 mg/g) was observed in the 2.5-BB treatment. The dominant mechanism among the kinetic adsorption characteristics of biochar beads for Pb was chemical adsorption. Additionally, the optimal pH range for Pb adsorption was found to be between 4 and 5.5. The highest Pb removal efficiency (97.9%) was achieved when 26.6 g/L of biochar beads were used. These findings suggest that biochar beads are an economical and highly efficient adsorbent that enables separation and recovery of fine biochar particles.

Relative Toxicity of Abamectin to the redatoryMite Amblyseius womersleyi Schicha (Acari: Phytoseiidae) and Twospotted Spider MIte Tetranychus urticae Koch (Acari: Tetranychidae) (아바멕틴의 긴털이리응애(Amblyseius womersleyi Schicha)와 점박이응애(Tetranychus urticae Koch)에 대한 선택독성)

  • Park, C.G.;Lee, M.H.;Yoo, J.K.;Lee, J.O.;Choi, B.R.
    • Korean journal of applied entomology
    • /
    • v.34 no.4
    • /
    • pp.360-367
    • /
    • 1995
  • The relative toxicity of abamectin was assessed to the predatory mite Amblyseius womersleyi Schicha and to dicofol-resistant and -susceptible twospotted spider mite (TSM) Tetranychus urticae Koch in the laboratory. Abamectin was much les toxic to the predator than to the spider mite. At 0.12 and 0.6 ppm, all TSM adult females of the tow strains were killed within 48 h after dipping n the solutions. The lower concentrations (0.06 and 0.012 ppm) killed more than 77% of TSM female adults of the two strains at 120 h after treatment. However, abmectin did not significantly affect the survival and mobility of A. womersleyi female adults at a concentration of 0.12 ppm but the mortality was slightly increased up to 20~23% at 0.6 and 6 ppm. Abamectin did not significantly affect hatchability of one-day old TSM eggs at 0.06~0.6 ppm. The Four-day old eggs were much more susceptible to abamectin than one-day old eggs were. Within 0.006-6 ppm, abamectin did not affect the hatchability of A. womersleyi eggs and the development of resulting immature predators. When the predator female adults were dipped in 0.6 and 0.12 ppm solution, their reproduction was not affected, but at 6 ppm it was decreased by 35%. However, the reproduction of TSM reduced significantly at concentrations between 0.006 and 0.6 ppm. The differential toxicity of abamectin between TSM and the predator could be of practical importance in managing spider mite populations in the field. Abamectin at selective sublethal concentrations (i.e., 0.012~0.06 ppm) could be of value in adjusting predator/prey ratios in integrated management of spider mites.

  • PDF

Development of Carbon Emission Factors and Biomass Allometric Equations for Metasequoia glyptostroboides and Platanus occidentalis in Urban Forests (정주지의 메타세쿼이아와 양버즘나무의 탄소 배출 계수 및 바이오매스 상대생장식 개발)

  • Jun-Young Jung;Subin Im;Hyun-Jun Kim;Kye-Han Lee
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.2
    • /
    • pp.127-135
    • /
    • 2023
  • This study aimed to develop biomass allometric equations and estimate carbon emission factors, such as the wood density, biomass-expansion factor, and root-to-shoot ratio, for Platanus occidentalis and Metasequoia glyptostroboides planted in urban areas. Twenty M. glyptostroboides and 25 P. occidentalis trees were harvested, and the dry weights and stem volumes of stems, branches, leaves, and roots (>5 mm) were measured. The wood densities of M. glyptostroboides and P. occidentalis were 0.293 ± 0.008 g cm-3 and 0.509 ± 0.018 g cm-3, and the biomass-expansion factors were 1.738 ± 0.031 and 1.561 ± 0.035. The root-to-shoot ratios were 0.446 ± 0.009 and 0.402 ± 0.012. The uncertainty tests (coefficient of variation, %) gave 2.8% and 3.5% values for wood density, 1.8% and 2.3% for biomass-expansion factor, and 2.1% and 2.9% for root-to-shoot ratio, respectively. Among the developed allometric equations, Model I using the diameter at breast height (DBH) was suitable. The allometric equations of M. glyptostroboides and P. occidentalis above ground were y = 1.679 (DBH)1.315 and y = 0.505 (DBH)1.896, and the allometric equations of the root and total were y = 0.746 (DBH)1.315, y = 0.301 (DBH)1.751, y = 2.422 (DBH)1.316, and y = 0.787 (DBH)1.858. If the carbon-emission factors of this study and biomass allometric equations of the three developed models are used to estimate the carbon storage and biomass of urban forests, errors caused by not considering the use of fixed factors and the environmental differences can be reduced.

Liquefaction Resistance of Gravel-Sand Mixtures (자갈-모래 혼합토의 액상화 거동)

  • Kim, Bang-Sig;Kang, Byung-Hee;Yoon, Yeo-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.10
    • /
    • pp.47-56
    • /
    • 2007
  • In this research, the effects of the gravel content on the liquefaction behavior for both of the isotropically and $K_0-anisotropically$ consolidated gravel-sand mixtures are investigated. for this purpose, the cyclic triaxial tests for the specimens with the same relative density (Dr=40%) and variations of gravel content were performed. On the other hand, a series of undrained cyclic triaxial tests were carried out on the isotropically consolidated gravel-sand mixtures with the same void ratio (e=0.7) and from 0% to 30% gravel contents. Void ratios of gravel-sand mixtures with the same relative density (Dr=40%) are found to decrease significantly with the increase of the gravel content from 0% to about 70% and increase thereafter. But the void ratio of the sand matrix among the gravel skeleton increases with the increase of the gravel contents. Test results are as follows : for the isotropically consolidated specimen with 40% of relative density and low gavel contents (GC=0%, 20%, 40%), pore water pressure development and axial strain behavior during undrained cyclic loading show similar behavior to those of the loose sand because of high void ratio, and the specimens with high gravel content (70%) both pore pressure and strata behaviors are similar to those of dense sand. And the isotropically consolidated specimens with the same void ratio (e=0.7) and higher gravel contents show the same behavior of pore water pressure and axial strain as that of the loose sand, but for the lower gravel content this behavior shows similar behavior to that of dense sand. The liquefaction strength of the isotropically consolidated specimens with the same relative density increases with gravel content up to 70%, and the strength decreases with the increase of the gravel content at the same void ratio. Thus, it is confirmed that the liquefaction strength of the gravel-sand mixtures depends both on relative density and void ratio of the whole mixture rather than the relative density of the sand matrix filled among gravels. On the other hand, the behavior of pore water pressure and axial strain for the $K_0-anisotropically$ consolidated gravel-sand mixtures shows almost the same cyclic behavior of the sand with no stress reversal even with some stress reversal of the cyclic loading. Namely, even the stress reversal of about 10% of cyclic stress amplitude, the permanent strain with small cyclic strain increases rapidly with the number of cycles, and the initial liquefaction does not occur always with less than maximum pore water pressure ratio of 1.0. The liquefaction resistance increases with the gravel contents between 0% and 40%, but tends to decrease beyond 40% of gravel content. In conclusion, the cyclic behavior of gravel-sand mixtures depends on factors such as gravel content, void ratio, relative density and consolidation condition.