• 제목/요약/키워드: Ratio of spacing to diameter of pipes

검색결과 3건 처리시간 0.017초

Peak mooring forces in the horizontal interlaced multi-layered moored floating pipe breakwater

  • Mane, Vishwanath;Rajappa, Sacchi;Rao, Subba;Vittal, Hegde A.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제3권2호
    • /
    • pp.150-158
    • /
    • 2011
  • Present study aims to investigate the influence of relative breakwater width W/L (W=width of breakwater, L=wavelength), wave steepness $H_i/gT^2$ (Hi=incident wave height, T=wave period) and relative wave height d/W (d=water depth) on forces in the moorings of horizontal interlaced multi-layered moored floating pipe breakwater (HIMMFPB) model. Studies were conducted on scaled down physical models having three layers of Poly Vinyl Chloride (PVC) pipes, wave steepness $H_i/gT^2$ varying from 0.063 to 0.849, relative width W/L varying from 0.4 to 2.65 and relative spacing S/D=2 (S=horizontal centre-to-centre spacing of pipes, D=diameter of pipes). Peak mooring forces were also measured and data collected is analyzed by plotting non-dimensional graphs depicting variation of $f_s/{\gamma}W^2$ ($f_s$=Sea side Mooring force, ${\gamma}$=specific weight of water) & $f_l/{\gamma}W^2$ ($f_l$=Lee side Mooring force) with $H_i/gT^2$ for d/W varying from 0.082 to 0.276 and also variation of $f_s/{\gamma}W^2$ and $f_l/{\gamma}W^2$ with W/L for $H_i$/d varying from 0.06 to 0.400.

고온 히트파이프식 태양열 흡수기의 내부형상 변화에 따른 열전달 특성의 수치해석 (Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver According to Internal Geometry Variation)

  • 박영학;부준홍;강용혁
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.165-168
    • /
    • 2008
  • A numerical analysis was conducted to predict the heat transfer characteristics of a solar receiver which is subject to very high heat fluxes and temperatures for solar thermal applications. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with a solar receiver according to internal geometry variation incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm and the angle of receiver end wall set $90^{\circ},\;60^{\circ},\;45^{\circ},\;30^{\circ}$. And the diameter of the heat pipe was 12.7 mm, 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the convection heat transfer along the channels. The numerical results are compared and analyzed from the view point of high-temperature solar receiver.

  • PDF

고온 히트파이프식 태양열 흡수기의 후벽 각도 변화에 따른 열전달 특성의 수치해석 (Numerical Analysis on Heat Transfer Characteristics of a Heat Pipe Type Solar Thermal Receiver Depending on End Wall Angle Variation)

  • 박영학;정의국;부준홍;강용혁
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2008년도 추계학술발표대회 논문집
    • /
    • pp.226-231
    • /
    • 2008
  • The heat transfer characteristics of a solar high-temperature receiver with heat pipes was investigated by numerical simulation. The concentration ratio of the solar receiver ranges 1000 and the concentrated heat is required to be transported to a certain distance for specific applications. This study deals with internal geometry variation of a solar receiver incorporating high-temperature heat pipe. The isothermal characteristics in the receiver section is of major concern. The diameter of the solar thermal receiver was 120 mm and the length was 400 mm. The angle of receiver end wall was varied between $0^{\circ}$ and $45^{\circ}$. The wall thickness of the heat pipe channel was 4mm and 48 axial channels of the same dimensions were attached to the outer wall of the receiver with even spacing in the circumferential direction. The channels are changed to high-temperature sodium heat pipes. Commercial softwares were employed to deal with the radiative heat transfer inside the receiver cavity and the conduction heat transfer along the channels. The numerical results are compared and analyzed from the view Point of high-temperature solar receiver.

  • PDF